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CALSSLAN PYRAMID
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Fig 1. A one-dimensicnal graphic representaton of the process which
cenerates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyranud. The walue of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node m a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level

to level, while the same weighting pattern  or “generating kernel" 1s
used to generate all levels.

Burt, P.J. & Adelson, E.H. (1983). The Laplacian Pyramid as a compact Image Code (1983). I[EEE Trans. Communic. 31, 532-540.



GAUSSIAN PYRANMID
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Fig. 4. First six levels of the Gaussian pyramid for the "Lady" image The original image, level 0, meusures 257 by
257 pixels and each higher level array is roughly half the dimensdons of its predecessor. Thus, level 5 measures
just 9 by 9 pixels.
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Burt, P.J. & Adelson, E.H. (1983). The Laplacian Pyramid as a compact Image Code (1983). IEEE Trans. Communic. 31, 532-540.



Fig 5. First four levels of the Gaussian and Laplacian pyramid. Gaussian images, upper row, were obtained by expanding
pyramid arrays (Fig. 4) through Gaussian interpolation. Each level of the Laplacian pyramid is the difference between the
corresponding and next higher levels of the Gaussian pyramid.

Burt, P.J. & Adelson, E.H. (1983). The Laplacian Pyramid as a compact Image Code (1983). IEEE Trans. Communic. 31, 532-540.



Central Limit Theorem.

Etant donnée une distribution arbitraire d’une variable
aléatoire de moyenne u et de variance o2
I'échantillonnage des moyennes (; tend vers une
distribution normale de moyenne u et de variance 0%/N
lorsque N, la taille de I'échantillon, augmente.

H-077
. qm{b[
u L L
g

oi=2736

| i I I I H =757
128

258

=125 Q (Fards
H= 1595
4(‘.!".-&[
L . n .
=128 (] 28

H=3 3G
i .
e 0 178
H=d ™
Al * Qo 128
v IZ8

FIG 6. The distribution of pixel gray level values at various stages of the encoding process. The histogram of the original image is
given in (a). (b)-(e) give histograms for levels 0-3 of the Laplacian pyramid with generating parameter a=0.6. Histograms following
guantization at each level are shown in (f)-(i). Note that pixel values in the Laplacian pyramid are concentrated near zero,
permitting data 5 compression through shortened and variable length code words. Substantial further reduction is realized through
quantization (particularly at low pyramid levels) and reduced sample density (particularly at high pyramid levels).

Burt, P.J. & Adelson, E.H. (1983). The Laplacian Pyramid as a compact Image Code (1983). IEEE Trans. Communic. 31, 532-540.
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Fig. 10. A summary of the steps in Laplacian pyramid coding and decoding.  First, the original image g, (lower left) is used to generate

Caussian pyramid levels g, g., ... through repeated local averaging. Levels of the Laplacian pyramid L. L. ... are then computed as
the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized to yvield the Laplacian pyramid code
€. .. .... Finally, a reconstructed image r,, 15 generated by summing levels of the code pyramid.

Burt, P.J. & Adelson, E.H. (1983). The Laplacian Pyramid as a compact Image Code (1983). I[EEE Trans. Communic. 31, 532-540.



Sagi, D. (1995). The psychophysics of texture segregation. In T.V. Papathomas, C. Chubb, A. Gorea & E.
Kowler (Eds.) Early vision and beyond. MIT Press, Cambridge.
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A model for texture segmentation. See text for description.
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Fig. 17.3

Gaussian pyramid computation illustrated using a picture of Alan
Turing. Each picture is produced by applying a small Gaussian-like
filter to the previous output, followed by subsampling by a factor of
two in each direckion.

Bergen, J.R. & Landy, M.S. (1991). Computational modeling of visual texture segregation. In M.S. Landy & J.A.
Movshon (Eds.) Computational models of visual processing. MIT Press, Cambridge.
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A. Original image, | B. First derivative, (dl/dx)*G

Edges and gradients in images. (A) Original image. (B) Filtered image that highlights the places that have a steep gradient in a
horizontal direction. Light points have a steep positive gradient; dark points have a steep negative gradient. Notice how these
points are associated with vertical or near-vertical edges in the original. The filter's receptive field (inset, enlarged x 4)
combined two operations—smoothing by a Gaussian filter (G) and differentiation (d/dx).



FIGURE 5.4
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Example of spatial filtering at
multiple spatial scales. Top
left: Original image. Below:
four filtered images obtained
using circular, Laplacian-of-
Gaussian, centre-surround
receptive fields. The
receptive fields, shown
attached to each image,
ranged from large to small.
Note that the filter output is
shown only within the black
outlines. Top right: average
of the four filtered images.
The similarity between this
and the original image shows
that multiscale filtering can
preserve all the image
information, even though any
one scale does not.



Spatial filtering of an image.

(A) A high-pass filtered version of
the original (B), with low frequencies
suppressed, as in Fig. 2.12C.

(C) The complementary, low-pass
filtered image, with high frequencies
suppressed. In fact, (C) was
produced by blurring the image
directly, to average or smooth out
the higher frequencies, and (A) was
formed by subfracting the low
frequencies (C) from the original (B),
i.e. B=A+ C. Graphs show the
intensity profile of a horizontal slice
through the centre of each image.
Note the smoothness of (C)

and the lack of large-scale
differences in (A).

A. High-pass filtered
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B. Original
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C. Low-pass filtered
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Seurat (1859-1891);
Grand champ, 1885.



Harmon, L. & Julesz, B. (1973). Masking in Visual recognition: Effects of
Two-Dimensional Noise. Science 180, 1194



The top left image is the untouched block portrait

Top right is the portrait that 1s more identifiable through blurring

Bottom right has the high frequencies removed with no enhancement of identifiability

Bottom left has the frequencies near the cancal band removed with an enhancement in identifiability
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Low Spatial Frequency: Margaret Thatcher
High Spatial Frequency: Tony Blair

An hybrid face presenting Margaret Tatcher (in Low Spatial Frequency) and Tony Blair (High Spatial Frequency) has been
displayed in 1998 in the Scottish National Portrait Gallery in Edinburgh (" The Science of the Face" organized by V. Bruce and A.
Young). If you squint, blink or defocus while looking at the pictures, Margaret Tatcher should substitute for Tony Blair (if this
demonstration does not work, step back from the pictures until your percepts change). The right picture is published in the book
"In The Eye of the Beholder: the Science of Face Perception", Vicki Bruce and Andy Young (Eds.), Oxford, 1998 (p 64).



HSF: neutral woman;
LSF: angry man.

HSF: angry man;
LSF: neutral woman.

Fig. 1. Two of the hybrid faces used in exps 1, 2 & 3. The fine spatial scales
(HSF) represents a non-expressive woman in the top picture and an angry man
in the bottom picture. The coarse spatial scale (LSF) represents the angry man
in the top picture and the neutral woman in the bottom picture. To see the LSF
faces, squint, blink, or step back from the picture until your perception changes.

Schyns PG & Oliva A, (1999) Dr. Angry and Mr. Smile: when categorization flexibly
modifies the perception of faces in rapid visual presentations. Cognition, 69, 243-2625,
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From left to right each column contains noise of higher and higher frequency. From top to bottom are
letters that are decreasing in their contrast. Effectiveness of the mask is determined by how far down one
can identify in a column. The reason you cannot resd very far down the center column is because the
critical band for identifying letters is sensitive to the frequency of the noise.

Solomon, J. & Pelli, D. (1994) The visual filter mediating letter identification. Nature 369, 395-397.
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Fig. 1. Examples of power spectrum forms for prototypical images (vertical axis is the magnitude in log scale,
horizontal axes are the spatial frequencies fx & fy). At the bottom, we show sections at several levels of the

power spectrum of each image.
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Fig. 2. The main steps for computing the vector of 100 components used to represent an image. a) Original
image. b) Output of the preprocessing stage: the effect of illuminant and shadows have been reduced. c) Power
spectrum of the prefiltered image. It is computed as the square of the magnitude of the Fourier Transform. d) -
3dB sections of the set of Gabor filters used to sample the power spectrum. The highest frequency is 1/3

cycles/image and the lowest one is 1/72 cycles/image.
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Fig. 3. The first 8 Principal components calculated from the spectrum of 700 scenes. The horizontal coordinate
is fx and the vertical one is fy. The symmetrical structure of the principal components is due to the mirror

transformation applied to the image power spectrum.

Oliva 0. et al. (1999). Global semantic classification of scenes using power spectrum templates. In Proceadings of The Challenge of Image
Retrieval (CIR99), Springer Verlag BCS Electronic Workshops in Computing series, Newcastle, UK.
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Fig. 5. Organization of new prototypical scenes on the Atrtificial-Natural axis. Pictures have been randomly selected and
are equally spaced along the axis. The left side exhibits artificial scenes and the right side exhibits natural scenes.
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Fig. 6. Examples of ambiguous scenes and their organization along the Artificial-Natural
axis. Images are sorted according to the Artificial-Natural DST (Discriminant Spectral
Template). From the top to bottom & from the left to the right, scenes are organized from
the most artificial to the most natural. Underlined images belong to the prototypical groups.
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Fig. 7. Results of projection of the testing group of natural images onto the Open-Closed axis. On the right-hand
side we show the resulting DST. 88% of the images are well classified in the learning and the testing phases.
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Fig. 8. Organization of new scenes randomly selected from the testing group along the Open-Closed axis.

Oliva 0. et al. (1999). Global semantic classification of scenes using power spectrum templates, In Proceedings of The Challenge of Image
Retrieval (CIR99), Springer Verlag BCS Electronic Workshops in Compuling series, Newcastle, UK.
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Fig. 15. Organization of new scenes according to the openness and ruggedness properties extracted by the WDSTs.

Oliva A, & Torralba A (2001). Modeling the shape of a scene: A holistic representation of the spatial envelope. Int. J Comp. Vis, 42, 145-175,
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Fig. 16. Organization of man-made environments according to the degree of openness and expansion (WDST).

Oliva A. & Torralba A (2001). Modeling the shape of a scene: A holistic representation of the spatial envelope. Int. J Comp. Vis. 42, 145-175,



