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Understanding how visual stimuli give rise to visual and 
to motor responses has been a main issue in cognitive neu-
roscience since its foundation (for reviews, see Glimcher, 
2003; Jeannerod, 1997; Milner & Goodale, 1995). One 
psychophysical approach to the investigation of the sensory–

motor relationship consists in confronting perceptual and 
motor latencies (e.g., Jaśkowski, 1996, 1999; Jeannerod, 
1997). The rationale of this slant is that an independent pro-
cessing of information for action and for perception should 
yield differences in the temporal layout of the perceptual 
and motor responses, whereas a common sensory–motor 
processing system should not. This approach, together with 
its different empirical realizations (including the present 
one), does not prejudge the definition of the very concepts 
of perceptual and motor decision moments nor their relative 
timing, although it links motor decisions to low-level online 
reactive processes and perceptual decisions to higher level 
processes less dependent on the immediate sensory input. 
What it does prejudge, however, is the very existence of 
these two types of moments and, therefore, the possibility 
of their independent measurement. Denying this possibility 
amounts to rendering the whole sensorimotor dissociation 
debate groundless.

In this study, we go along with the standard contemporary 
terminology whereby the “nature” of a percept is defined 
by the very task used to assess it—namely, detection (as in 
the present experiments), discrimination, identification, or 
classification.1 In the remainder of this article, the timing 
of such processes will be referred to as the moments when 

the relevant internal activity exceeds a decision criterion, 
as classically defined by signal detection theory (Green & 
Swets, 1966). Accordingly, any difference between per-
ceptual and motor decision moments should be attributed 
to distinct perceptual and motor criteria, to different time 
constants of the respective internal responses (the strong 
sensorimotor dissociation stand), or to both.

The most widespread method used to compare percep-
tual and motor latencies (for a review, see Jaśkowski, 1996) 
consists in pitting the difference in simple response times 
(∆RT) to stimuli of unequal saliency against the point of 
subjective simultaneity (PSS) for these same stimuli as 
assessed from temporal order judgments (TOJs). This 
comparison is based on the largely consensual notion that 
the RT task is a direct way of assessing motor latencies, 
whereas the TOJ task, in order to be performed, requires 
the comparison of two perceptual moments.

The simplest model of the sensory–motor relationship 
posits that RT and TOJ tasks rely on the same internal 
signal and on the same decision (Gibbon & Rutschmann, 
1969). Accordingly, such a model predicts that, in re-
sponse to two unequally salient stimuli, motor (∆RT) 
and perceptual (PSS) delays should coincide. Most ex-
periments, however, have shown that PSS and ∆RT (and, 
more generally, perceptual and motor latencies) are differ-
ently affected by a number of stimulus manipulations (for 
reviews, see Jaśkowski, 1996, 1999; Miller & Schwarz, 
2006). In particular, the effect of manipulations of stimu-
lus intensity on DRT has been shown to be about double 
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effects on the TOJ means were about 2.1 times larger than 
those on the RT means, these same effects on the TOJ stan-
dard deviations were about 1.5 times smaller than those on 
the RT standard deviations. On the basis of their intuition 
that a simplified one-system–two-decisions integration-
to-bound model should predict equal means and standard 
deviation slopes,2 these authors suggested that the larger 
TOJ scatter is inherent to this experimental paradigm.

RT and TOJ measurements differ in a number of ways. 
The two temporally close stimuli used in TOJ may yield 
apparent motion (a cue that might be useful for the TOJ 
task, but not for the RT task) or may mask each other 
unequally (with the occasional transient fading of the 
lower saliency stimulus; Kanai & Kamitani, 2003). The 
inherent subjective nature of the TOJ task permits the use 
of a range of temporal markers (e.g., Jaśkowski, 1992; 
Sternberg & Knoll, 1973) and is prone to uncontrolled 
contextual effects (e.g., Miyazaki, Yamamoto, Uchida, & 
Kitazawa, 2006). These factors may generate a signifi-
cant increase in the variability of the data. Finally, TOJs 
are not time constrained and, therefore, allow the use of 
information that is not accessible in the speeded RT task. 
For all these reasons, the comparison of RT and TOJ per-
formances remains a subject of debate.

The purpose of the present study is twofold. First, it 
introduces a method of assessing perceptual latencies 
presumably less prone to the criticisms above. Second, it 
develops two quantitative models to predict the relation-
ship between perceptual and motor decision latencies with 
regard to both their means and their variances.

The Anticipation Response Time Method  
and Its Rationale

The measurement of RTs to periodic stimuli has been 
used at least since Stevens (1886) to study time perception. 
It has been declined in at least two forms. The most fre-
quently used form consists of having subjects synchronize 
their tapping with a series of equally time-spaced (auditory 
or visual) stimuli. Alternatively, subjects are exposed to 
only three equally time-spaced events and are asked to press 
a button in synchrony with the third event (e.g., Doehring, 
1961; Mamassian, 2006, 2008). We will refer hereafter to 
the latter procedure as the anticipation RT (ART). Note 
that since this anticipatory response is a delayed response 
to the second stimulus in the sequence, ART is, according 
to the implicit definition commonly used in the literature, 
a measure of perceptual latency. The latency derived from 
tapping is, however, less appropriate than ART for deriving 
a perceptual latency. In tapping, subjects typically enter an 
automatic response mode so that their response pace be-
comes partly self-sustained and, hence, less dependent on 
the periodic stimulus with which it must be synchronized. 
Also, inasmuch as the latency to be derived from tapping 
is to be compared with the motor latency assessed via RT, 
the two tasks cannot be matched, since, by construction, 
RT cannot be automatized. Finally, although not critically, 
tapping typically entails a negative asynchrony error (e.g., 
Aschersleben, 2002), whereas ART does not (Mamassian, 
2006, 2008).3 Strangely, the reproduction of time intervals 
for the purpose of testing the sensorimotor dissociation 

the effect on PSS (Jaśkowski, 1992; Jaśkowski & Verleger, 
2000; Roufs, 1974; but see Roufs, 1963).

In addition to neuropsychological reports (Goodale & 
Milner, 1992) and to a number of psychophysical masking 
studies (e.g., Klotz & Neumann, 1999; Schmidt & Vorberg, 
2006; Vorberg, Mattler, Heinecke, Schmidt, & Schwarz-
bach, 2003), the ∆RT–PSS discrepancy has been taken as 
yet another piece of evidence in favor of two independent 
motor and perceptual processing systems (Neumann, Essel-
mann, & Klotz, 1993; Tappe, Niepel, & Neumann, 1994). 
This dissociation, nonetheless, has been firmly criticized 
on anatomo-physiological (e.g., Merigan & Maunsell, 
1993), behavioral (e.g., Franz, Gegenfurtner, Bülthoff, & 
Fahle, 2000; Gegenfurtner & Franz, 2007; Stone & Krauz
lis, 2003), and even neuropsychological (e.g., Pisella, 
Binkofski, Lasek, Toni, & Rossetti, 2006; Rossetti, Pisella, 
& Vighetto, 2003; Schenk, 2006) grounds.

An intermediate path proposes that perceptual and motor 
decisions operate either on the same internal response, but 
at different times and internal activation levels, or according 
to different decision rules. Sternberg and Knoll (1973), for 
example, proposed that motor responses are triggered as the 
internal activation evoked by the stimuli exceeds a motor 
threshold, whereas the perceptual judgments are based on 
the temporal delay between the peak values of these internal 
evoked responses, a concept with no biological foundation 
(Lennie, 1981). More recently, Miller and Schwarz (2006) 
presented a one-system diffusion model in which TOJ and 
RT are triggered as a unique diffusion signal reaches first 
the perceptual and then the motor thresholds (or bounds), 
respectively. Such a one-signal–two-decisions integration-
to-bound view had already been proposed by Sanford 
(1974) and has been backed up by a number of behavioral 
studies (e.g., Cardoso-Leite, Gorea, & Mamassian, 2007; 
Ejima & Ohtani, 1987; Waszak, Cardoso-Leite, & Gorea, 
2007; Waszak & Gorea, 2004). For example, the systemati-
cally observed correlation between RT and TOJ, with ∆RT 
larger than PSS by a constant ratio, can easily be accounted 
for in terms of such one-signal–two-decisions models (see 
Cardoso-Leite et al., 2007; Miller & Schwarz, 2006).

Despite this consistently reported ∆RT–PSS differ-
ence, the specific relationship between ∆RT and PSS may 
drastically vary within and across studies (e.g., Asch
ersleben & Müsseler, 1999; Cardoso-Leite et al., 2007; 
Jaśkowski, 1992, 1993; Roufs, 1974; Tappe et al., 1994). 
Standard one-system integration-to-bound models require 
that the variances of the perceptual and motor responses 
decrease in proportion to stimulus intensity and increase 
with the buildup of these responses over time. It follows 
that the relationship between mean perceptual and motor 
decision times, on the one hand, and the relationship be-
tween their variances, on the other hand, should follow a 
function critically dependent on the underlying decision 
processes. Cardoso-Leite et al.’s (2007) study is the only 
one we know of that has empirically addressed this issue. 
That study showed that although perceptual and motor 
decision times (as derived from RT and TOJ measure-
ments) are linearly related with regard to both their means 
and their standard deviations, the respective slopes differ 
significantly. In particular, whereas the stimulus intensity 
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that they are based on the same internal response. The TOJ–
RT literature indicates that RTs are affected by saliency 
changes more than TOJs, hence suggesting that cP , cM. 
On the basis of experiments using a different task and meth-
odology, the cP . cM case has also been advanced (Waszak 
et al., 2007), suggesting that the relationship between motor 
and perceptual criteria is stimulus/task dependent.

Modeling the RT–ART Relationship
We present two integration-to-bound decision models 

and their predictions of the RT–ART relationship; both 
models yield a linear relationship between ART and RT 
means, on the one hand, and between their associated vari-
ances, on the other hand.5 The two models predict that the 
slope of the relationship between ART and RT means is 
given by the cP/cM ratio, but they predict different slopes 
for the relationship between ART and RT variances.

The measured response time (RT or ART) distributions 
for a given stimulus intensity, i, t(i), are considered under 
both models presented below as the sum of two random 
variables,

	 t(i) 5 d(i) 1 k,	 (1)

with d(i), a random variable representing the moment of 
detection of a stimulus of intensity i, and with k, a com-
bined task 1 observer specific random variable indepen-
dent of the decision process.6 The mean and variance of 
these distributions are given by

	 E[t(i)] 5 E[d(i)] 1 E[k]	 (2)

and

has been rarely used and only with the tapping procedure 
(Aschersleben, 2002; Aschersleben & Müsseler, 1999). 
This study is the first to use ARTs for assessing perceptual 
latencies and to compare them with RTs.

Figure 1 illustrates the rationale underlying the pres-
ent ART technique. Three identical stimuli are presented 
in sequence at a constant pace. They can be of relatively 
low (black bars) or high (gray bars) saliency (Figure 1A). 
The standard assumption is that the buildup over time 
of the internal responses evoked by each stimulus in the 
sequence—equivalent to the accumulation of evidence 
in favor of stimulus presence—is proportional to the 
stimulus’s saliency (Carpenter & Williams, 1995; Gold 
& Shadlen, 2001; Luce, 1986). The internal responses to 
low-saliency stimuli (black oblique lines) will reach a per-
ceptual decision criterion (dashed horizontal black line 
labeled cP in Figure 1B) after the internal responses to 
the higher saliency stimulus (gray oblique lines). Hence, 
the ART for the low-saliency stimulus will be delayed by 
as much, with respect to the ART for the higher saliency 
stimulus, with the ART difference (DART) proportional to 
the difference in stimulus saliency.4 This reasoning holds 
whether the accumulation of evidence is described by a 
linear deterministic (as in Figures 1B and 1C; see, e.g., 
Brown & Heathcote, 2008; Grice, 1972; Reddi, Asrress, 
& Carpenter, 2003; Reeves, Santhi, & DeCaro, 2005) or 
stochastic (e.g., Luce, 1986; Wald, 1947) function.

For generality, we will assume, along with a number of 
authors (see above), that perceptual and motor behaviors 
are triggered at distinct response levels—that is, for differ-
ent perceptual, cP, and motor, cM, criteria (Figure 1C)—but 
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Figure 1. Rationale underlying the temporal anticipation task. (A) Temporal configuration of the sequence of high- 
(gray bars) and low-saliency (black bars) stimulations. (B) The stimuli in panel A give rise to an internal activity whose 
buildup rate is proportional to their saliency: Internal responses to low-saliency stimuli (black oblique lines) reach a 
perceptual decision criterion cP (dashed horizontal black line) later than do internal responses to high-saliency stimuli 
(gray oblique lines). Hence, the anticipatory response time (ART) for the low-saliency stimulus (black arrow) will be de-
layed by as much, with respect to the ART for the high-saliency (gray arrow) stimulus, with the ART difference (DART) 
proportional to the stimulus saliency difference. (C) The same internal response built up as in panel B, but with distinct 
perceptual and motor decision criteria (cP and cM, respectively; dashed lines). According to this scheme, a change in 
stimulus intensity (gray vs. black oblique lines in panel B) will yield a larger effect on the motor (DRT) than on the per-
ceptual (DART). See the text for more details.
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where E[k] and Var[k] cancel out after normalization. As 
is shown in Appendix A, SLB predicts a linear relation-
ship between *mRT(i) and *mART(i), as well as between 
*s2

RT(i) and *s2
ART(i), with slopes given by the ratio be-

tween the corresponding criteria and by the square of this 
ratio, respectively:

	 *mART(i) 5 
  

cART

cRT






 3 *mRT(i)	 (9)

and

	 *s2
ART(i) 5 

  

cART

cRT







2

 3 *s2
RT(i).	 (10)

Wald model. Unlike SLB, the Wald model represents 
the evidence accumulated over time as a stochastic pro-
cess: At each time step (e.g., each millisecond), the ob-
server is given some evidence, modeled as a normal dis-
tribution of mean a(i) determined by i, the intensity of the 
stimulus. The decision to respond, d, is taken as the sum of 
these random variables exceeds a certain criterion c. For 
a(i) ,, c, and as the time steps get increasingly small, the 
probability density function of the number of steps needed 
to exceed c (i.e., d, the time needed to reach the decision) 
can be approximated by the Wald distribution (Heathcote, 
Brown, & Cousineau, 2004; Wald, 1947):

	   	
w(d) = c

2πd3
× exp −  

[c − a(i) × d]2

2d








.
	

(11)

The mean and variance of the RT distribution under the 
Wald model are given by

	 E[t(i)] 5 
  

c
a(i)

 1 E[k]	 (12)

and

	 Var[t(i)] 5 

  

c
a(i)3

 1 Var[k].	 (13)

The SLB and Wald models differ only in that the latter 
predicts the same slopes relating the normalized means 
(Equation 9) and the normalized variances—that is,

	 *s2
ART(i) 5 

  

cART

cRT






 3 *s2

RT(i).	 (14)

Modeling the ART task. The relationship between the 
ART and RT tasks predicted by either of the two mod-
els depends critically on how observers perform the ART 
task. When the interstimulus interval is constant through-
out an experimental block and observers are told so (as 
in the present experiments; see the Method section), one 
strategy would be that once this interval is internalized 
(within a few trials), observers reproduce it thereafter 
without reassessing it on each new trial. In this case, ART 
and RT tasks become virtually identical, since they mea-
sure an RT relative to a unique start stimulus—that is, the 
second stimulus in the ART and the third in the RT stimu-
lation sequences (see the Method section). This response 
strategy will be referred to as a simple detection strategy 
(SDS). The predictions presented above were derived as-
suming this SDS.

	 Var[t(i)] 5 Var[d(i)] 1 Var[k].	 (3)

In the most general case, testing decision models of 
RT and/or ART requires a model of d(i), but also of k. If 
we focus on the first and second moments of the RT dis-
tributions, the normalization procedure described below 
permits the canceling out of k. Furthermore, for a class 
of simple models such as the ones developed here, it is 
possible to decompose the decisional random variable (or 
its mean and variance) into the product of a criterion-only 
dependent function and an intensity-only dependent func-
tion. From this decomposed expression, it is easy to de-
rive predictions of the relationship between ART and RT 
means and variances based only on the respective decision 
criteria. This procedure would not hold for more realistic 
models (positing a random starting point of the internal 
response and noisy decision criteria; Brown & Heathcote, 
2008) that require the explicit modeling of d(i) and k.

The normalization procedure consists of subtracting 
the mean, E[t(0)], and variance, Var[t(0)], of each ob-
server’s RT and ART response distributions for the highest 
contrast stimulus (i 5 0) from his/her means and vari-
ances of the corresponding response distributions for the 
remaining contrasts—that is,

	 *mt(i) 5 E[t(i)] 2 E[t(0)]	 (4)

and

	 *st2(i) 5 Var[t(i)] 2 Var[t(0)],	 (5)

with the asterisk standing for normalized and i 5 {1,2,3} 
the index of the three remaining contrasts used in this 
study.

The predictions of the two models and the data are pre-
sented in terms of means and variances normalized via 
this procedure.

The simplest linear ballistic model. The simplest lin-
ear ballistic (SLB) model is similar to a number of exist-
ing models (Grice, 1972; Reddi et al., 2003; Reeves et al., 
2005), in that it represents the accumulation of evidence 
within a trial as a deterministic linear function of time with 
a constant integration starting point (typically set to 0; for 
a critical review of such models, see Brown & Heathcote, 
2008). Accordingly, the internal response is R 5 a(i) 3 t, 
with t being the time and a(i) the slope, a random variable 
(not necessarily Gaussian) dependent on stimulus inten-
sity i. A decision to respond, d, is taken when the internal 
response R exceeds the criterion c—that is, 

	 d 5 
  

c
a(i)

.	

The RT distribution is thus given by

	
t(i) 5 

  

c
a(i)

 1 k,	 (6)

which has the following mean and variance:

E[t(i)] 5 c 3 E 
  

1
a(i)






 1 E[k]	 (7)

and

	 Var [t(i)] 5 c2 3 Var 
  

1
a(i)






 1 Var [k],	 (8)
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Method

Stimuli
The stimuli were 4 cycles/deg vertical Gabor patches with a standard 

deviation of 4º presented on a virtual 6º-radius circle around a white 
fixation cross at a mean luminance of 40 cd/m2. The contrast of the 
Gabor carrier was either .1, .2, .4, or .8, and it was fixed throughout an 
experimental block. The Gabors were displayed on a 19-in. CRT moni-
tor (1,024 3 768 pixels) with a 100-Hz refresh rate located 60 cm from 
the observer. In the ART experiment, the six Gabors were presented by 
successive pairs that remained on the screen, with the Gabors of each 
pair located at the opposite vertices of a hexagon. The presentation 
order was kept constant throughout the experiment, with the Gabor 
pair on the vertical meridian always the last (Steps 1–3 in Figure 2A). 
In the RT experiment, the first two pairs were presented simultane-
ously, followed at a random interval by the third pair. Stimulus presen-
tation and response recording were controlled using the Psychophysics 
Toolbox (Brainard, 1997; Pelli, 1997) under MATLAB R14.

Procedure
In the ART task, the stimulus onset asynchrony (SOA) between 

the first and second pairs (SOA1–2) equaled the SOA between the 
second and third pairs (SOA2–3) and was kept constant at 500 msec. 
The observers were instructed to press a key simultaneously with the 
presentation of the third pair that completed the hexagonal display of 
the Gabor patches (Mamassian, 2006, 2008). A block of 20 training 
trials was performed by each subject to ensure that he or she properly 
understood the task.

In the RT task, the first two pairs were presented simultaneously 
(SOA1–2 5 0), and the observers were required to perform a speeded 
keypress to the appearance of the third pair, whose onset was unpre-
dictable. To counteract the influence of the foreperiod on RT (Luce, 

Alternatively, subjects may evaluate the temporal interval 
between the first two stimulations on each trial and attempt 
to reproduce it by starting with their detection of the second 
stimulus in the sequence of three. This behavior is referred 
to hereafter as a double-detection strategy (DDS). It can 
be shown (see Appendix B) that relative to the predictions 
under the first strategy (SDS), the mean of ART is unaf-
fected under DDS but that the ART variance is increased 
by a factor of five. In this case, the slope of the derived 
linear relationship between ART and RT variances (but not 
means) is also five times steeper for both SLB and Wald.

Be that as it may, SLB and Wald models predict linear, 
zero-intercept relationships both between the normalized 
ART and RT means and between the corresponding vari-
ances. The two models predict the same slope for the re-
lationship between the normalized ART–RT means (see 
Equation 9)—that is,

	   

cART

cRT

,
	

but different slopes between the corresponding normal-
ized variances (see Equations 10 and 14). The slope of the 
fitted zero-intercept line on the normalized means will 
thus be a test of the hypothesis of distinct task-specific 
(i.e., perceptual vs. motor) decision criteria, whereas the 
ratio between this slope and the slope on the normalized 
variances will, possibly, discriminate between the SLB 
and Wald models.

A

Foreperiod Step 1 Step 2 Step 3

Step 1
Step 2

Step 3B

500~2,500 msec 500 msec 500 msec

Step 2
Step 3C

500~2,500 msec 200~3,000 msec

Figure 2. One-trial sequence illustrating the spatial configuration of the stimuli (A) and their temporal organi-
zation in the anticipation (B) and response time (C) tasks.
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measured distributions, a distribution of means and a dis-
tribution of variances (105 values each), each with its own 
mean (E[m] and E[s2]) and standard deviation (SD[m] and 
SD[s2]), the latter being a measure of the reliability of 
E[m] and of E[s2], respectively.

As was explained in the Modeling the RT–ART Rela-
tionship section (Equations 4 and 5), these means of means 
(E[mi]) and means of variances (E[s2

i ]) were normalized 
to cancel out any task- and observer-specific random vari-
able. These normalized values will be referred to as *mRT 
and *s2

RT for the RT data and *mART and *s2
ART for the ART 

data. The *mART and *s2
ART datum points for each observer 

are shown separately in Figures 3A and 3B (different sym-
bols for the 8 observers) as a function of the corresponding 
*mRT and *s2

RT. Each plot contains 24 datum points (i.e., 
8 observers 3 3 contrasts, with the fourth contrast sacri-
ficed for the normalization). Heavy lines are linear, zero-
intercept fits, as required by both SLB and Wald models.

Since the datum points were noisy along both the x and 
y dimensions, the fit was done with a weighted total least 
squares algorithm (Krystek & Anton, 2007, 2008), where 
the weights associated with each datum point were SD[m] 
and SD[s2] and are shown as horizontal and vertical error 
bars, respectively.

The slope of the line fitted to the *mART versus *mRT data 
(Figure 3A) is .64, with a 95% confidence interval ranging 
from .48 to .80; the equivalent slope for the *s2

ART versus 
*s2

RT data (Figure 3B) is .59, with a 95% confidence in-
terval ranging from .26 to .92. Consequently, both slopes 
are significantly above zero and below one, evidencing a 
correlation between ART–RT variables while pointing to 
the difference between the decision processes underlying 
ART and RT responses.

The SLB and Wald models—assuming the SDS for the 
ART task (see the Modeling the RT–ART Relationship 

1986), the probability density function for the random SOA2–3 was dis-
tributed as a decaying exponential with a mean of 500 msec, truncated 
to a maximum of 3,000 msec plus a constant 200-msec foreperiod.

In both tasks, the observers initiated each trial by pressing a key. 
The duration between this press and the onset of either the first pair 
(ART) or the first two pairs (RT) varied randomly according to an 
exponential distribution with a mean of 500 msec, truncated to a 
maximum of 2,000 msec plus a constant 500-msec foreperiod.

One experimental block consisted of 50 trials and was specified 
in terms of the task (ART vs. RT) and the contrast of the Gabors 
(.1, .2, .4, and .8); this yielded eight different experimental condi-
tions. The nature of the task (ART vs. RT) was indicated on the 
screen at the beginning of each block. Each of the eight experi-
mental blocks was run twice, and their sequence was randomized 
for each observer. Hence, each experimental point (mean RT, mean 
ART, and their associated variances) was computed out of 100 tri-
als. The observers could take breaks between each block (every 
3 min), but not within a block (unless they did not press any key). 
The complete experiment lasted about 45 min.

Observers
Eight right-handed observers (3 women, 5 men, including the 

first and last author; 24–54 years old) participated in the present 
experiments.

Results

Comparison of ART–RT Data and Models
The raw data consisted of 64 (ART and RT) RT distribu-

tions (8 subjects 3 4 contrasts 3 2 tasks) with about 100 
datum points each; values two times larger than the inter-
quartile range of each sample were excluded (M 6 SE 5 
6.33% 6 0.630%). A bootstrapping procedure was used 
to assess the reliability of the means and variances of each 
of these 64 distributions: The mean and variance of 50 
trials randomly drawn (with replacement) from each of 
these 64 distributions were computed, and the procedure 
was repeated 105 times. This yielded, for each of the 64 
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sible stimulus intensity binary combinations [̂sART(i, j) 5 
√ s2

ART(i) 1 s2
ART( j) ] against the corresponding calcula-

tions for sRT. Under this format, the present standard de-
viations are theoretically equivalent to those assessed in 
Cardoso-Leite et al.’s TOJ study presented in Figure 4B′.7

The converted ART data are clearly less scattered than 
the TOJ data (compare the 95% confidence intervals in Fig-
ures 4A and 4B with those in Figures 4A′ and 4B′, dashed 
curves). Note that the slopes of the linear regressions8 
through the DmART(i, j) versus DmRT(i, j) (Figure 4A; slope, 
0.631) and the ŝART(i, j) versus ŝRT(i, j) (Figure 4B; slope, 
0.437) data are below 1 ( pµ , .001; pσ , .001) and compa-
rable. This is not the case for the regressions through the PSS 
versus DmRT(i, j) (Figure 4A′; slope, 0.475) and the sTOJ(i, j) 
versus ̂sRT(i, j) (Figure 4B′; slope, 1.466) data. It is notable 
that this gain in consistency is achieved at a lesser cost, since 
the assessment of a TOJ psychometric function is substan-
tially more time consuming than the assessment of ART.

Discussion

Perceptual and motor latencies have most often been 
measured and compared under unmatched stimulation 
conditions. Typically, differences in RT to one stimulus at 
a time have been compared with PSS inferred from TOJs 
of (by necessity) two successive stimuli. Masking, appar-
ent motion, and/or attentional shift effects may interfere 
with the TOJ task, but not with the RT task, and should 
account at least in part for the observed discrepancies be-
tween the observed perceptual and motor performances. 
The present ART–RT paradigm minimizes the stimulation 
and response differences between the two tasks, thereby 
avoiding some uncontrolled sources of noise. In terms of 
data dispersion, a qualitative comparison between the re-
sults yielded by the present ART paradigm and the TOJ 
paradigm used by Cardoso-Leite et al. (2007) is indeed to 
the advantage of the former (Figure 4). This is not to say 
that ART is the “ultimate” perceptual latency measurement 
technique. In addition to using a stimulation sequence 
not entirely matched to the one used in the RT task, ART 
and RT measurements cannot be paired on a trial-by-trial 
basis, a procedure taken advantage of by Cardoso-Leite 
et al. Also, in the general case, the derivation of perceptual 
latencies from ART requires a model of time perception 
(bypassed here by the data normalization procedure; see 
the Modeling the RT–ART Relationship section).

Linear fits on the normalized means and variances of 
ART against the corresponding RT statistics yield slopes 
of .64 and .59, respectively. The .64 slope of the linear fit 
of the ART versus RT normalized means is in line with 
results in the literature showing that intensity (or contrast) 
manipulations affect the mean of perceptual latencies 
about 1.5 times less than they affect the mean of motor 
latencies (e.g., Jaśkowski, 1992; Jaśkowski & Verleger, 
2000; Roufs, 1974). The .59 slope of the linear relation-
ship between ART and RT normalized variances is con-
sistent with this differential effect of stimulus intensity on 
perceptual and motor latencies. This was not the case in 
Cardoso-Leite et al.’s (2007) study, in which the variance 
of the perceptual moments derived from TOJ was affected 

section)—differ in that the former predicts that the slope 
of the normalized variances is the square of the slope of 
the normalized means (Equations 9 and 10), whereas the 
latter predicts the same slope for the normalized means 
and variances (Equations 9 and 14). The present data and 
their linear fits (given their confidence intervals) are in 
good agreement with both models, so that they cannot dis-
criminate between them. Critically, given either of the two 
models, the two independently estimated slopes indicate 
that the motor decision criterion is about 1.5 times higher 
than the perceptual decision criterion (precisely 1.30 and 
1.70 as derived from the normalized variances under SLB 
and Wald models, respectively, and 1.56 as derived from 
the normalized means under either model).

The present data and their analysis point to the strong 
correlation between perceptual and motor latencies and to 
the fact that the means (as has frequently been reported) 
and variances of perceptual latencies are less affected by 
stimulus intensity than are the respective moments of the 
motor latencies. According to our analysis, the latter point 
is the consequence of the motor decision criterion being 
about 1.5 times higher than the perceptual one. It also 
supports the notion that observers’ duration estimates in 
the ART task are internalized (within one experimental 
block) once and for all, rather than varying from trial to 
trial. In the latter case, the *s2

ART/*s2
RT ratio should have 

been 5 times higher than the one actually observed (cf. the 
Modeling the ART Task subsection and Appendix B).

To wrap it up, the present results and their analysis are 
in accord with a general model positing that perceptual 
and motor decisions are based on the same internal sig-
nal but are made with respect to distinct criteria, with the 
motor criterion 1.5 times higher than the perceptual crite-
rion (Cardoso-Leite et al., 2007; Ejima & Ohtani, 1987; 
Miller & Schwarz, 2006; Sanford, 1974).

Comparing TOJ and ART Paradigms
On the basis of the observations above and as was men-

tioned in the introduction, the present ART task presents a 
number of advantages over the more traditional TOJ task: 
It is based on the use by observers of one single unambigu-
ous temporal cue, is void of putative low-level interactions 
between the two stimulations required for TOJ, and is time 
constrained just as the RT but not as the TOJ task. Conse-
quently, estimates of the decision moments derived from 
ART should be more readily comparable to those derived 
from RT. A direct comparison between the reliabilities of 
the perceptual–motor relationship as assessed using ART 
and TOJ tasks is hindered by the fact that they involve dif-
ferent stimulations. To make such a direct (although quali-
tative) comparison possible, ART data (mART and sART) 
were converted into a TOJ-like format. To this end, we 
computed the difference in mean ART [DmART(i, j )] be-
tween all possible binary (i, j ) combinations of stimulus 
intensities [mART(i) 2 mART( j)]. They are displayed in Fig-
ure 4A as a function of the corresponding differences in 
mean RT [DmRT(i, j) 5 mRT(i) 2 mRT( j)]. This format is 
equivalent to the PSS versus DmRT(i, j) plot in Figure 4A′ 
from Cardoso-Leite et al. (2007). Similarly, Figure 4B dis-
plays the square roots of the sums of variances for all pos-
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The present data do not differentiate between the SLB 
and Wald models. These models differ in that they predict 
that the slope of the relationship between ART–RT vari-
ances is equal to (Wald) or is the square of (SLB) the slope 
of the relationship between ART–RT means. The confi-
dence intervals of the linear fits of the observed means and 
variances are too large to reject either model. On the other 
hand, these confidence intervals are such that the observed 
slopes are statistically larger than 0 and smaller than 1 (.64 
and .59). The difference from 0 is evidence of a signifi-
cant correlation between perceptual (ART) and motor (RT) 
responses. The difference from 1 implies that perceptual 
and motor latencies as measured with ART and RT are not 
identical. The specific values of these slopes are compatible 
with the predictions of both SLB and Wald decision mod-
els. These models share the same backbone assumptions—
namely, that both perceptual and motor decisions are taken 
on evidence from a unique integration-to-bound process but 
that this evidence level differs between the two decisions. 
In particular, the larger effects of stimulus saliency on both 
the mean and variance of RT, as compared with the effects 
on the mean and variance of ART, respectively, indicate 

more by stimulus intensity than was the variance of the 
motor latencies derived from RT. The incongruence could 
reflect the imperfect match between the RT and TOJ tasks. 
This possibility is reinforced by the fact that, given the 
observed relationship between the mean latencies derived 
from RT and TOJ, the relationship of the corresponding 
variances is incongruent with the one predicted by either 
of the SLB and Wald models tested in this study.

The slope of the relationship between ART and RT vari-
ances as predicted by either of these two models depends 
critically on observers’ response strategy in the ART task. 
Indeed, observers may use an internalized reference dura-
tion throughout an experimental ART block or may com-
pute this reference on a trial-by-trial basis. In the latter 
case, the two models predict that the slope of the relation-
ship between ART and RT variances should be five times 
larger than the slope of the relationship between ART and 
RT means (see Appendix B). Since this is clearly rejected 
by the data, one should conclude in favor of the first al-
ternative. If so, the present ART task can be looked upon 
as virtually identical to the RT task, since it involves a 
response to just a single stimulus.
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sively speeded (and “perceptual” performance drops), 
the task is regarded as being more of the “motor” type. 
The perceptual–motor classification is therefore volatile. 
Speeded or not, a behavioral response is ultimately motor 
and necessarily (at least in the laboratory) triggered by 
a sensory stimulation. Clarifying the ambiguity of the 
perception–action distinction and of its twin conscious 
(vision for perception) versus unconscious (vision for 
action) dichotomy was not the purpose of the present 
study. Instead, its achievement is to show that perfor-
mances in two tasks presumably isolating perceptual and 
motor aspects of one’s behavior are strongly correlated. 
In fact, since visual perception is inherently ambiguous 
(Helmholtz, 1867), how can it be that perception and ac-
tion typically reach identical conclusions if they rely on 
independent processes (Franz et al., 2000)?

Conclusion
The present study introduced an alternative technique 

for assessing perceptual latencies (ART) in conjunction 
with motor latencies and showed that it is more reliable, 
less subject to uncontrolled, interfering low-level factors, 
and more efficient than the standard TOJ technique. Its 
use in comparing perceptual and motor latencies demon-
strated that these behaviors are highly correlated and can 
be accurately described by either of two models positing 
a shared internal signal and two distinct decision criteria, 
with the motor criterion higher than the perceptual one. 
The relationship between these distinct decision variables 
may, nonetheless, be modifiable by stimulation conditions 
and/or contextual effects.
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Notes

1. This operational classification leaves no room for the long-forgotten 
debate on the relationship between sensation and perception (see Boring, 
1942).

2. This formalization, only alluded to in that study, corresponds to the 
simple ballistic model fully developed in the present study.

3. As will become clear below, this is not a critical issue, since our 
ART procedure is meant to measure relative perception latency, which is 

Appendix A 
Predictions of the SLB and Wald Models

Assuming that observers use the SDS to perform the ART task (see Appendix B), the means and variances of 
both RT and ART response distributions, t(i), under the SLB model are given by

	 E [t(i)] 5 c 3 E
  

1
a(i)






 1 E[k]	 (A1)

and

	 Var [t(i)] 5 c2 3 Var
  

1
a(i)






 1 Var [k]	 (A2)

and under the Wald model by

	 E [t(i)] 5 c 3 
  

1
a(i)

 1 E[k]	 (A3)

and

	 Var[t(i)] 5 c 3 
  

1
a(i)3

 1 Var [k].	 (A4)

Assuming the DDS for performing the ART task, the means and variances of the ART distribution are given by

	 E[t(i)] 5 c 3 E 
  

1
a(i)






 1 E[k]	 (A5)

and

	 Var [t(i)] 5 5 3 c2 3 Var
  

1
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




 1 Var [k]	 (A6)

under the SLB model and by

	 E [t(i)] 5 c 3 
  

1
a(i)

 1 E[k]	 (A7)

and

	 Var [t(i)] 5 5 3 c 3 
  

1
a(i)3

 1 Var [k].	 (A8)

under the Wald model.
The normalized means and normalized variances are defined as

	 *mt(i) 5 E[t(i)] 2 E[t(0)]	 (A9)

and

	
*s2t(i) 5 Var[t(i)] 2 Var[t(0)],	 (A10)

where t(0) refers to the RT distribution to the highest contrast stimulus.
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Replacing E[t(i)] and Var[t(i)] in Equations A9 and A10 with the formalization corresponding to the two de-
cision models and for both ART strategies (SDS and DDS), the corresponding normalized means and variances 
are easily derived from Equations A1–A8. Under SLB and SDS, they are given by
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and
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Under Wald and SDS, they are given by
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and
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Under SLB and DDS,
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and
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And, finally, under Wald and DDS,
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and
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We now will present the derivation of Equations 9 and 10 in the main text; they express the normalized mean 
and variance of ART as a function of the normalized mean and variance of RT under SLB and given SDS. The 
derivation of the equivalent equations under Wald and SDS (Equations 9 and 14 in the main text), SLB and DDS 
(Equations B8–B9), and Wald and DDS (Equations B10–B11) is identical. The normalized mean and variance 
of RT are given by
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and
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and the normalized mean and variance of ART are given by
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and
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where cRT and cART represent the RT and ART decision criteria, respectively. Rewriting the normalized mean 
and variance of RT and ART yields
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and
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It is easy to see that
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 3 *mRT(i)		  (A25)

and
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 3 *s2
RT(i).  	 (A26)

 

Appendix B 
Alternative ART Strategies

The RT distribution t(i) depends on, among other things, stimulus intensity i, the model of the decision pro-
cess (i.e., SLB or Wald), and the response strategy used in the ART task. One ART response strategy, developed 
in the article, consists of reproducing an internalized duration at the moment of detection of the second stimulus 
in the sequence of three. This ART response strategy will be referred to as a simple detection strategy (SDS). 
Alternatively, subjects could evaluate on each trial the temporal interval between the first two stimulations and 
attempt to reproduce it, starting with their detection of the second one. Since this strategy implies the detection 
of the first and second stimulations, it will be referred to as a double-detection strategy (DDS). Here, we develop 
the predictions of the relationships between ART and RT means and variances under both SLB and Wald deci-
sion models based on the DDS.

Let d1, d2, and d3 be the moments of detection of the first, second, and third stimuli (expressed relative to their 
respective physical onsets), and let d be the physical interstimulus interval. The duration separating d1 and d2 
is (d2 1 d ) 2 d1, and the expected moment of detection of the third stimulus, d3, is given by d1 1 2(d2 1 d 2 
d1). Rewriting this equation and inserting a random variable k reflecting, among other things, a noisy duration 
estimation and reproduction process, the latency distribution of the keypresses in the ART task is given by

	 t(i) 5 2d2(i) 2 d1(i) 1 2d 1 k,	 (B1)

with its mean, expressed relative to the onset of the third stimulus, given by

	 E[t(i)] 5 E[2d2(i) 2 d1(i) 1 k]	 (B2)

	 E[t(i)] 5 E[2d2(i)] 2 E[d1(i)] 1 E[k]	 (B3)

	 E[t(i)] 5 E[d(i)] 1 E[k]	 (B4)

and its variance given by

	 Var [t(i)] 5 Var [2d2(i) 2 d1(i) 1 k]	 (B5)

	 Var [t(i)] 5 Var [2d2(i)] 1 Var [d1(i)] 1 Var [k]	 (B6)

	 Var [t(i)] 5 5 3 Var [d(i)] 1Var [k].	 (B7)

Equations B1–B7 are independent of how d is modeled.
Given the DDS for performing the ART task, the predicted relationships between the normalized mean and 

variance of the ART distribution and the normalized mean and variance of the RT distribution are given, under 
SLB, by
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and, under Wald, by
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