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It has been commonly reported that the temporal integration of grating contrast proceeds more slowly as spatial 
frequency is increased. Such results have been based on the critical duration for sensitivity to contrast pulses 
varying in duration, but the analyses have not assumed full integration at short durations and have neglected the 
effects of probability summation over time. To take such effects into account, we discuss a class of analytical 
models based on nonlinear temporal integration. On the assumption that the temporal impulse response of the 
visual system determines contrast integration over time, we develop both a high-threshold model and a signal- 
detection approach involving multiple and independent nonlinear signal detectors with a time-limited integration 
span. The redefined critical durations predicted by the models and verified by the data are about 35 msec and vary 
by no more than 10 msec across spatial frequency. This variation is entirely attributable to a change in the strength 
of inhibition with spatial frequency, and the analysis implies that the excitatory component is constant at all spatial 
frequencies, contrary to previous accounts. 

1. INTRODUCTION 

Bloch's law states that for sufficiently short stimulus dura- 
tions, detection threshold decreases inversely with the dura- 
tion of the stimulus.~ For longer durations, empirical 
thresholds in all known stimulus domains progressively de- 
part from this law and have typically been assumed to ap- 
proach a constant value independent of the stimulus dura- 
tion. The threshold-duration function has thus often been 
characterized by two asymptotic slopes of -1 and 0 on dou- 
ble logarithmic coordinates whose intercept defines the crit- 
ical duration of the system. 

Several investigators have determined threshold-dura- - 
tion functions for detection of contrast increments in sinu- 
soidal-grating ~timuli .~-5 These studies all agree in fitting a 
zero-slope segment to the datum points obtained with very 
long durations, although segments of arbitrary slopes have 
often been fitted to the transition region of the threshold- 
duration function.5 However, the assumption that the slope 
reaches zero ignores the effects of probability summation of 
decision events over time.6 Under certain conditions to be 
analyzed in this paper, such probability summation implies 
that the threshold should continue to decrease as duration 
increases, requiring a reevaluation of the definition of criti- 
cal duration. 

The studies cited did not use sufficiently short durations 
to obtain the full reciprocity between time and contrast 
required by Bloch's law and instead fitted their data in this 
region with a straight segment of arbitrary slope in double 
logarithmic coordinates. Critical duration was then esti- 
mated from the intercept of the first two fitted segments. 
Under this loose definition, critical durations for contrast 
integration increased by as much as half of a log unit with 
spatial frequency. However, the lack of theoretical assump- 
tions constraining the fitting procedures leads to difficulty 
in comparing critical durations obtained in different studies 
and across spatial frequency. This calls into question the 
implied temporal characteristics of sustained (sluggish) and 
transient (fast) mechanisms that might be processing such 

We present here a quantitative model to account for 
Bloch's law for contrast and propose a new interpretation of 
the critical duration. This model derives the form of the 
threshold-duration function by nonlinear integration of the- 
oretical neural responses to stimulus events, with an  addi- 
tional stage of probability summation among temporally 
separated integrators. As opposed to previous concepts of 
probability summation over time6 and over space?v9 which 
used Quick's10 high-threshold formulation, our development 
of the probability-summation process is based on a signal- 
detection approach. 

'The temporal modulation transfer function changes its 
bandpass characteristics with spatial frequency." The neu- 
ral impulse response as derived from it by inverse Fourier 
transformation12 will therefore be altered correspondingly. 
The variations in the temporal integration function with 
spatial frequency may be due solely to the impulse-response 
characteristics, without implying the presence of separate 
transient and sustained mechanisms as previously suggest- 
ed.3 We therefore test whether models that do not include 
such a dichotomy will correctly predict threshold-duration 
functions a t  low and high spatial frequencies. 

2. THEORETICAL ANALYSIS 

A. Empirical Constraints 
The previous data quoted require a model whose threshold- 
duration predictions exhibit the following characteristics: 
(1) They must level off for durations longer than about 80 
msec a t  low spatial frequencies but (2) still be time depen- 
dent for high spatial frequencies; (3) they must be nonmono- 
tonic, showing a threshold increase somewhere between 500 
and 800 msec for low spatial frequencies and (4) exhibit a 
decelerating decrease in threshold beyond this limit for high 
spatial frequencies. All these constraints are empirically 
based, but only the first two have been unanimously taken 
into consideration in previous studies. 

The late dip in sensitivity of item (3) is not always ob- 
served but is very evident in data from some laboratories. 
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Fig. 1. Data from previous experiments showing sensitivity dips. 
Typical experimental variables controlling the strength of the dip 
are the size, the spatial structure, and the average luminance of the 
inspection field (see text). 
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To illustrate this point, Fig. 1 shows four sets of data repro- 
duced from previous work: Breitmeyer and Ganz,3 4 X 6" 
field; Kelly and Savoie,13 8" field; Roufs,l4 1200 and 1 Td, 
l0field. Note that the sensitivity dip appears to depend on 
both the spatial characteristics and the average luminance of 
the inspection field. Whereas the former may affect the 
slope of the psychometric function,15 the latter was shown to 
determine the shape of the impulse response.I6 We there- 
fore require a model that takes these factors into account. 
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B. The Linear Stage 
To the extent that  the visual system behaves as a unique 
temporal filter a t  each given spatial frequency," its tempo- 
ral impulse response h(r) is the Fourier transform of the 
modulation transfer function (MTF) measured a t  the given 
spatial frequency. Depending on the characteristics of the 
MTF," the impulse response will be either monophasic or 
biphasic. The energy under its negative lobe, usually associ- 
ated with the amount of lateral inhibition in the visual sys- 
tem,12 depends directly on the spatial structure of the stimu- 
lus. I t  approaches zero when the spatial frequency is higher 
than about 3-4 cyclesldegree (cldeg). Since our intention is 
to illustrate two extreme cases of Bloch's law for contrast, 
namely, for low and high spatial frequencies, biphasic (full 
inhibition) and monophasic (no'inhibition) impulse respons- 
es were used to fit our data (Fig. 2). They were derived from 
Watson'sls theoretical impulse response which appeared to 

. 

be a sufficiently accurate estimate of the neural impulse 
response. 

The first step of the model is to assume that the visual 
filter responding to a pulse stimulus is linear. As a conse- 
quence, its pulse response H(t)  will be given by the convolu- 
tion of its impulse response h(r )  with the temporally modu- 
lated stimulus f(t): 

The lower 0 limit of the integral is required for the system to 
be causal. Figure 3 displays numerical estimations of H(t) 
obtained with monophasic and biphasic impulse responses 
for short and long rectangular pulses (43- and 193-msec 
duration, respectively). 

Whereas for monophasic impulse responses the absolute 
energy under H(t)  increases indefinitely with the duration of 
the pulse, for biphasic impulse responses it eventually stops 
increasing. This occurs a t  the duration where the two lobes 
of the pulse response begin to separate, as determined by the 
overall duration of the impulse response. 

C. High-Threshold Models 
We first consider four classes of model based on the concept 
of probability summation over time derived from the high- 
threshold assumption of the detection process.1° In this 
subsection we will show that each class may be rejected by its 
failure to predict one or more of the empirical constraints in 
Subsection 2.A. 
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Fig. 2. Typical temporal MTF's obtained with low (left) and high 
(right) spatial frequencies. The corresponding impulse responses 
(insets) are from Watson.6 
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Fig. 3. Pulse responses obtained by convolution of the monophasic 
(upper panels) and the biphasic (lower panels) impulse responses of 
Fig. 2 with a, short and b, long stimulus pulses [Eq. (I)]. Note that 
for short pulses both responses are similar in form to the respective 
impulse response but are more extended in time. For long pulses, 
the area under the monophasic pulse response progressively in- 
creases, while it reaches a constant value for the biphasic impulse 
response. In this latter case, only the separation between the two 
lobes is time dependent. 
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I. Indefinite-Integration Model 
The most recent model that is applicable to the temporal 
integration function is that of Watson: in which the detec- 
tion process can be described as a power integration of the 
pulse response, with an exponent being determined by the 
probabilistic nature of the integration process. At thresh- 
old, the response of the system is then given by 

In this equation the absolute expression can be interpreted 
as the internal response of time-independent mechanisms 
whose outputs are summated probabilistically according to 
Quick's10 formulation, where the B exponent is the measured 
slope of the psychometric function. According to Watson, 
the integral in this expression is infinite in both directions of 
time. This is trivially implausible for the future direction, 
since it implies that the observer waits forever before mak- 
ing a response. We therefore regard the upper limit of this 
indefinite integral as corresponding to to, the time of the 
decision, where the observer is instructed to wait until all 
response events appear to be over before making a decision. 
Therefore to is equal to the duration of the stimulus plus a 
constant sufficiently long to include most of the energy of 
the decaying pulse response. Integration will thus continue 
throughout the duration of the internal response, in contrast 
with other m o d e l ~ l ~ - ~ ~  that assume a short, finite integration 
limit. Moreover, it is reasonable to assume that the integra- 
tion starts at  the beginning of a given trial ( t  = 0) since it will 
otherwise include internal responses to previous trials. 

Given the presence of the absolute operator in Eq. (Z), the 
response energy to be integrated will always be positive. 
Thus increasing the duration of the stimulus will never de- 
crease the value of the indefinite integral. In the case of 
impulse responses with an imbalance between the positive 
and the negative lobes (high spatial frequencies-monopha- 
sic impulse responses), the indefinite integral will continue 
to increase with increasing stimulus duration. As discussed 
below, the rate of this increase a t  long durations is incompat- 
ible with data obtained with high spatial frequencies. For 
impulse responses that are perfectly balanced (low spatial 
frequencies-biphasic impulse responses), the indefinite in- 
tegral will reach a constant value at  the point where the 
stimulus is longer than the impulse-response duration. 
Therefore the indefinite-integral model cannot account for 
the empirical requirement of a reduction in sensitivity a t  
Iollger durations (Fig. 1). 

2. I.irni~(:tl-Integralion Model 
r 7 1 he simplest way to obtain a dip in sensitivity (rise in 
thrc~shold) a t  longer durations is, as suggested above, to limit 
{.he integral in Eq. (2) to the appropriate time T: 

('ol~sitlcr t'irst the case of the biphasic impulse response of 
Fig. 3. It' T is more than twice as long as the impulse 
resl)otlse. then the integral will reach its full value when the 
stimulus has the same duration as the impulse response. As 
the stimulus duration approaches T, the second lobe of the 
~ ~ t l l s e  response (Fig. :3b, lower panel) will progressively tend 
to  fall outside the integration limit. Eventually, the only 

portion of the pulse response, H(t) ,  within the integration 
limit will be its positive lobe, which contains half of the total 
energy under H(t). The value of the nonlinear integral a t  
long durations will therefore drop by a factor of 2L'B com- 
pared with that a t  the optimum duration. Note that the 
strength of the dip depends on the power of the nonlinearity 
@ so that it may be undetectable if f l  is large. 

Whereas the limited integral can account for the empirical 
requirement of a dip for biphasic impulse responses, it does 
not fare so well in the case of monophasic impulse responses. 
Although the pulse response for this case increases indefi- 
nitely (Fig. 3b, upper panel), for the limited-integration win- 
dow the value of the integral will reach a plateau when 
stimulus duration exceeds the integration limit. Values of 
the integration limit of 200 and 500 msec were used by 
previous  author^,^^-^^ while the data of Fig. 1 require values 
betwen 200 and 800 msec. However, previous data2*5 ob- 
tained with high spatial frequencies (i.e., for a monophasic 
impulse response) can show improvement in sensitivity up 
to 2 sec. Moreover, the theoretical interpretation of the 
power nonlinearity as reflecting probability summation re- 
quires that this improvement continue indefinitely. We can 
therefore reject the limited-integration model on both em- 
pirical and theoretical grounds. 

3. Double-Integration Model 
An alternative approach that retains the sensitivity dip for 
biphasic impulse responses while allowing integration to 
continue for monophasic impulse responses is to include two 
levels of integration in the model: 

In this equation the first integration level is limited and 
corresponds to a discrete sensitivity window of a single de- 
tection mechanism. This formulation assumes the exis- 
tence of an indefinite number of such time-limited, indepen- 
dent detectors each of which starts to integrate a t  an arbi- 
trary time with respect to the stimulation period. The 
visual system is then assumed to summate over the responses 
of all these mechanisms up to the time of the decision (to) in 
the outer integral. The idea that each detection mechanism 
may show a variable responsiveness over time is physiologi- 
cally plausible, given the sensitivity fluctuations observed in 
single-unit recordings (e.g., Tolhurst et ~ 1 . ~ 2 ) .  The time- 
limited integral of equal length for all mechanisms is a first 
approximation to the idea of these continuous fluctuations 
of varying length, but it will produce a similar overall output 
when integration occurs over a large number of mechanisms. 

The limited inner integral will produce a sensitivity dip 
for biphasic impulse responses when the stimulus duration 
exceeds the limit of the integral, because each mechanism 
will then be able to integrate only the first or the second lobe 
of the pulse response, which are now separated by more than 
the integration length. Intermediate sensitivity windows 
will receive less than the full energy from either lobe and will 
contribute to the overall integral to a smaller extent. 

The problem with the double-integration model lies in its 
behavior for high spatial frequencies a t  durations longer 
than the integration window. For these long durations, the 
model predicts (as is also the case with Watson's6 formula- 
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tion) a rate of decrease in threshold equal to -110 (see 
below). Although both the precise rate of threshold de- 
crease and the form of the psychometric function may be 
difficult to measure experimentally, the data to be presented 
below as well as previous data5 indicate that the decrease 
may be substantially shallower than predicted. Extensive 
evidence obtained in the spatial domain23 actually suggests 
that the threshold-decrease rate with stimulus spatial extent 
is well described by a -1/2/3 slope. 

4. Diode Models 
The family of models just described used rectification of the 
pulse response before its nonlinear processing. However, i t  
is also physiologically plausible that positive and negative 
internal responses are detected through independent (on 
and off) ~ h a n n e l s l ~ . ~ ~  whose output is subsequently added 
probabilistically. All the preceding models can then be re- 
written in this diode form. 

Nevertheless, to the extent that  both on and off channels 
are equally sensitive, none of such diode-type models would 
account for the empirical requirement of a sensitivity dip 
observed with low spatial frequencies. Indeed, whether the 
sign-specific integrators are time limited or not, they will 
exclusively include only the appropriate lobe (positive or 
negative) of the pulse response. Therefore the increasing 
separation of the two lobes with increasing duration will not 
produce the output change required, as discussed above, to 
simulate the empirical sensitivity dip illustrated in Fig. 1. 

On the other hand, if the two sign-specific integrators 
have sufficiently unequal sensitivities, the diode solution 
can produce an appropriate sensitivity dip.13 However, the 
required asymmetry is a factor of 2.7, which is far beyond the 
asymmetry of a factor of only 1.1 measured directly in incre- 
ment-decrement-threshold studies.25 Given this small 
asymmetry, none of the diode models can produce a sensitiv- 
ity dip of the appropriate magnitude. 

We conclude that none of the models discussed has the 
appropriate form to account for all the empirical require- 
ments specified initially. 

D. The Signal Detection Approach 
In all the above models the /3 power can be looked on either 
as reflecting a probability-summation parameter within the 
high-threshold formulationlo or as a hard-wired nonlinearity 
followed by nonprobabilistic linear summation.20 In either 
case, as discussed, they do not fit all the empirical require- 
ments specified initially. Furthermore, the high-threshold 
formulation has been acknowledged as physiologically im- 
plausible by Quick himself and rejected on different grounds 
since.15 For the single-integrator models, which imply the 
existence of a single processing channel, the interpretation 
of /3 as a hard-wired nonlinearity is also inconsistent with our . 
knowledge of the visual system as made up of multiple paral- 
lel channels fluctuating in sensitivity over time. 

This leaves the double-integrator model of Eq. (4) that 
allows for multiple channels whose responses are of the form 
of the inner integral but then assumes that their outputs are 
integrated linearly over time. Such integration is consistent 
with signal-detection theory26 only under the assumption 
that the noise in all channels is correlated over time. Given 
the activity of peripheral and cortical visual neurons, it is 
unlikely that the neural noise maintains a significant degree 

of correlation over periods of the order of 1 sec. We there- 
fore assume that the noise is independent in each of the 
channels whose responses Ri are given by the inner integral 
of Eq. (4). The overall response R of the system is then 
obtained as described by Eq. (5), which assumes ideal signal 
detectors with uncorrelated noise2? 

At threshold, where R = 1, this type of summation can be 
incorporated into Eq. 4, which becomes 

In the signal-detection formulation the psychometric 
function has the form of a cumulative Gaussian curve.26 In 
the two-alternative forced-choice paradigm such a function 
can be well approximated by the function10 

where Cis stimulus contrast and S is a sensitivity parameter. 
Wilson27 has recently shown that for low contrasts C, the 

internal response Ri of a given signal detector i is well ap- 
proximated by (SiC)S, with Si its sensitivity parameter. Si 
can be chosen such that the internal response is scaled in units 
of the standard deviation of the internal noise, in which case 

R, = d', = (8) 

and 

In this expression /3 appears as a hard-wired nonlinearity 
of the transducer function. Note that, although Eq. (7) is 
identical to Quick's expression for the psychometric func- 
tion, the definition of Ri in Eq. (9) differs from that of Quick, 
and they must now be summed according to Eq. (5) to obtain 

------- 
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Fig. 4. ~ l o ~ k  diagram of the model discussed in the text [Eq. (6)]. 
Note that the operation of the model is illustrated as a function of 
time t ,  as specified by the abscissa in the uppermost part of the 
figure. 
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the overall response R. Therefore Eq. (7) can no longer be 
derived from Eq. (9) by applying the standard high-thresh- 
old assumption, according to which P = 1 - T (1  - Pi). 
Consequently, although the slope parameter of the psycho- 
metric function given by Eq. (7) remains ,8, overall sensitiv- 
ity S will not vary as the 1/@ root number of detectors N, as 
predicted by the high-threshold formulation. If the detec- 
tcrs all have equal sensitivity, i t  can easily be shown from 
Eqs. (5) and (8) that 

Figure 4 displays a block diagram of the model described by 
Eq. (6), where the processing of the signal a t  each integration 
level is specified analytically. 

3. PREDICTIONS OF THE MODELS 
We present here numerical simulations of the contrast 
thresholds as predicted by Watson's model [Eq. (211 to be 
contrasted with predictions of the model that we propose 
[Eq. (6)]. All other models discussed in Subsection 2.D lead 
to predictions quite similar to those of Eq. (2) and will not be 
discussed further. The simulations were run for the mono- 
 h ha sic and the biphasic impulse responses described in Sub- 
section 3.R using a range of values of the @ parameter (Figs. 
5a and 51)). The double-integral model also allowed for 
v;~ricltions in the length of the integration window (Fig. Sc). 

Although full integration (-1 slope) always occurs for 
short stimulus durations, a t  longer durations the behavior of 
the function depends markedly on the type of the impulse 
response. For the monophasic type (upper curves in Figs. 
5a and Sb), the threshold in the simple integrator model 

0 . 0 1 ~  I I f t , , I  1 I , % # I  1 
10 50 100 500 1000 

DWIATION (msec) 

DURATION (msec) 

Fig. 5. Threshold-duration functions as predicted by a, Eq. (2) 
and b, Eq. (6). Predictions of the two models (a and b) were made 
for different 0 values. Panel c displays predictions obtained with 
Eq. (6) for different window lengths (as specified in the figure) a t  a 
constant b. Upper and lower curves in each panel were obtained 
with monophasic and biphasic impulse responses, respectively. 
The straight lines show the asymptotic slopes of the threshold-dur- 
ation functions as derived from the models. 
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attains a decrease rate of -l//3 (Fig. 5a). Introduction of the 
integration window in the double-integrator model produces 
a second asymptotic slope of -1120 beyond the window 
duration (Fig. 5b), so that thresholds in this condition will 
now decrease more slowly. Varying the duration of the 
window simply shifts the point of intersection of the -118 
and -1120 asymptotes. 

For biphasic impulse responses (lower curves in Figs. 5a 
and 5b) the simple integrator model now shows an asymptot- 
ic approach to a constant value, which varies with /3 (Fig. 5a). 
Since we cannot measure absolute sensitivity, the variation 
in this constant level is best expressed as a variation in the 
intersection point of the two asymptotes. When the double 
integrator is introduced, the effect of the window is to pro- 
duce an increase in threshold as the end of the window is 
approached (Fig. 5b). The strength of this sensitivity dip is 
maximum for f i  = 1, and it decreases as 21/28. 

To estimate the extent to which the proposed model fits 
the experimental data, we measured contrast thresholds for 
low- and high-spatial-frequency gratings as a function of 
exposure duration. The parameter was independently 
estimated from psychometric functions measured at  differ- 
ent presentation times. 

4. METHODS 
The stimuli were 0.8- and 8-c/deg sinusoidal gratings dis- 
played on a Hewlett-Packard cathode-ray tube (HPl1332A) 
with green phosphor and were generated by an Apple-11+ 
computer. They were viewed through a circular aperture of 
2.5' diameter at  115 cm from the observer. The display had 
a large equiluminant surround of matched chromaticity, 
with 40-cd/m2 average luminance. A tiny dark spot was 
used to help fixation. To match the conditions of a related 
experiment where phase sensitivity was measuredF3 the rel- 
ative phase of the stimuli was randomly changed between 
trials. The two authors served as observers in all experi- 
ments. 

Contrast thresholds were measured by means of a two- 
alternative forced-choice staircase method. Contrast was 
always increased by 0.06 log unit for a wrong response and 
decreased by the same amount with a probability p = 0.3 for 
a correct response. This produces an average detection level 
of 80% correct on the psychometric function.27 After 10 
preliminary trials, the threshold was computed as the mean 
contrast of the following 40 trials. The stimuli were pre- 
sented in a rectangular temporal window of variable length. 
Up to 13 presentation times ranging from 7.5 to 1000 msec 
were used. Spatial frequency and presentation times were 
randomly varied from run to run. At least three thresholds 
were measured for each experimental condition. 

Another set of experiments was designed to measure the. 
psychometric function for the two spatial frequencies. 
Probability p was used as a parameter of the staircase proce- 
dure and was randomly varied from one run to the next so as 
to span the whole range of detection levels describing the 
psychometric function. Typically, variations of p from 0.1 
to 0.95 resulted in detection levels ranging from 0.55 to 
0.98.'8 The psychometric functions were obtained with du- 
rations ranging from 50 to 1000 msec. 

C W T  

RELATIVE CONTRAST (dB) 
Fig. 6. Percentages of correct responses as a function of contrast 
obtained with 0.8- (left panels) and 8-cldeg (right panels) stimuli 
presented for 400 msec. Observers AG and CWT, upper and lower 
panels, respectively. The continuous lines show maximum-likeli- 
hood estimates of the psychometric function. 

5. RESULTS 

A. Psychometric Functions 
Figure 6 shows psychometric functions for the 0.8- and 8- 
c/deg gratings and for the two observers with 400-msec stim- 
uli. The smooth curves drawn through the datum points are 
from Eq. (7), and their slope was estimated by maximizing 
the likelihood ratio of the theoretical binomial distribution 
of the observed number of correct  response^.^ Although 
observer AG shows different slopes for low and high spatial 
frequencies (2.1 and 3.5, with standard deviations of 3~0.35 
and 0.46, respectively), observer CWT has similar slopes in 
both conditions (3.2 at low and 3 at  high spatial frequencies 
with standard deviations of f 0.45 and 0.34, respectively). 
Variations in the slope of the psychometric function with the 
spatial frequency of the stimulus have been previously de- 
scribed.l5 From Fig. 4 it can thus be predicted that observer 
CWT should show a shallower dip than observer AG in the 
0.8-c/deg condition. 

For high spatial frequencies one might expect a change in 
slope of the threshold-duration function (beyond the inte- 
gration window) to be accompanied by a corresponding 
change in the slope parameter of the psychometric function 
p. However, our formulation of the double-integrator mod- 
el [Eqs. (6) and (7)] predicts that /3 should remain invariant 
with duration for all stimulus durations. To test this pre- 
diction we measured /3 for the 8-c/deg grating at  durations 
ranging from 50 to 1000 msec and obtained values of 3.3-3.5 
for observer AG and 3.0-3.3 for observer CWT. These val- 
ues are constant within experimental error (f 0.4). 

B. Comparison of the Two Models for Temporal 
Integration of Contrast 
Although absolute threshold values would be predicted by 
the models from temporal MTF's at  the two spatial frequen- 
cies studied, such MTF's were not measured in the present 
study. We therefore found the vertical shift required to fit 
the data by a standard least-squares procedure. 
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DURATION (rnsec) 
Fig. 7. Forced-choice threshold-duration data obtained for the two observers with 0.8- (upper curves) and 8-cldeg (lower curves) stimuli. 
Dashed and continuous curves are predictions obtained from Eqs. (2) and (61, respectively (see text for details). 

Figure 7 shows the empirical data and predictions derived 
from Eq. (2) (with parameters from Watson6-dashed 
curve) with only sensitivity as a free parameter. For Eq. (6) 
(the signal-detection variant-continuous curve) the same 
procedure was used, together with a 500-msec integration 
limit determined by inspection, to provide the best fit for 
both observers. Given that the impulse responses were de- 
rived from frequency-response data from another laboratory 
in different observers, both models provide an excellent fit 
to the temporal integration functions for both low- and high- 
spatial-frequency gratings. In logarithmic units the average 
standard deviations of the data from the single-integrator 
model are 1.53 and 1.32 dB for the two observers, whereas 
the deviations from the double-integrator model are 1.32 
and 1.18 d B  (where 1 dB = 1/20 loglo unit). Overall, the 
single-integrator model accounts for about 94% of the vari- 
ance for both observers, whereas the double-integrator mod- 
el accounts for 96% of the variance. Note that in the bi- 
phasic condition, a change in the impulse-response time 
constant by only 16% or in the B used by 38% would produce 
a statistically significant increase in the standard deviation 
of the fit.29 

We next address the question of whether the double-inte- 
grator model statistically improves the fit to the data. This 
can be tested for the residual variance of the deviations from 
the best-fitting prediction for the single-integrator model. 
The double-integrator model has one additional free param- 
eter of window length of the second integration, since the 
magnitude of the changes is predicted by the measured P. 
The x' for goodness of fit of the predictions with the residual 
variances shows a significant improvement with the use of 
the double integrator for one condition for observer CWT 
and with both conditions combined for each observer.30 
Furthermore, the second integrator provides a parameter 
appropriate to improve the fit of the model to the data, i.e., 
threshold a t  low spatial frequencies and decreased slope a t  
high spatial frequencies. Note that because the strength of 
the dip is strongly dependent on the P parameter, the shal- 
low sensitivity dip for observer CWT (biphasic condition) is 
consistent with his relatively high obtained in this condi- 
tion. 

6. DISCUSSION 

A. Impulse-Response Assumptions 
We have described a general class of models intended to 
account for contrast integration over time by the visual sys- 
tem. On the assumption that the visual system is linear a t  a 
first level of integration, its temporal integration behavior 
was inferred from typical impulse responses. The use of the 
biphasic (fully developed inhibition) and monophasic (ab- 
sence of inhibition) impulse responses to account for con- 
trast integration for low (0.8-c/deg) and high (8-c/deg) spa- 
tial frequencies, respectively, was justified on two grounds. 
The bandpass characteristics of the temporal MTF are prac- 
tically invariant below 1 c/deg,3l suggesting that  within this 
spatial-frequency region inhibition is fully developed. 
Above 3 cldeg the temporal MTF has an invariant low-pass 

implying the absence of inhibition in this region. 
Had the 0.8-c/deg grating not produced a fully balanced 
inhibitory component, the measured contrast-integration 
functions would not have reached a plateau of 0 slope but 
continued to decrease. Conversely, for a 8-c/deg grating, 
the presence of a small inhibitory component would have 
produced slopes shallower than -110 for durations below 
300 msec. Neither type of error is evident in the data (Fig. 
7). 

B. Estimation of the Critical Duration 
Most previous measurements of threshold-duration func- 
tions have been used to infer a critical duration for the 
mechanisms under study. Because such functions show a 
smooth transition between the two limiting asymptotes, it 
has been convenient to define the critical duration as the 
intercept of these asymptotes. By using empirically de- 
fined slopes for the limiting asymptotes, several authors 
have suggested that the critical duration is strongly depen- 
dent on the spatial frequency of the stimulus. However, our 
analysis implies that the definition should be constrained so 
as to allow only for an asymptote of -1 slope for sufficiently 
short durations and for asymptotes of either -1/P (mono- 
phasic impulse responses) or 0 (fully biphasic impulse re- 
sponses) slope for longer durations not exceeding the inte- 
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Table 1. Estimated Critical Durations (7,) 

Model T ,  (msec) 
Single Double 

Spatial b Integrator Integrator Mean 
Frequency AG CWT AG CWT AG CWT (7,) 

Low 2.1 3.2 36 32 34 31 33 
(0.8 cldeg) 

High 3.2 3.0 38 43 38 42 40 
(8 cldeg) 

gration window. The -1 and -I/@ or 0 asymptotes specify 
the upper and lower efficiency limits of the integration pro- 
cess. Their intersection can therefore be looked on as the 
duration a t  which the two limits are equally distant from the 
smooth curve, and the efficiency of the full integration pro- 
cess is at  half of its maximum. We therefore define critical 
duration as the intersection between these 'theoretical 
asymptotes. 

Under this new definition the critical duration may be 
determined for the two spatial frequencies tested. The re- 
sult should be insensitive to the use of a single- versus a 
double-integrator model, since both models are equivalent 
up to the duration of the second integration window (500 
msec), as can be seen in Fig. 7. (Use of the complete data set 
for this fit, up to 1000 msec, perturbs the parameters for 
short durations only slightly.) The estimates of critical du- 
ration for both model fits are given in Table 1, together with 
the empirical ,B values for the model fits. As predicted, the 
estimates from the two models are very similar (within 2 
msec). They also differ by less than 5 msec between observ- 
ers. 

Combining the estimates for both observers and both 
models gives average estimates for critical durations of 33 
msec a t  low and 40 msec a t  high frequencies. Thus;when 

probability summation is taken into account, the critical 
duration varies by less than 10 msec as spatial frequency is 
varied, despite the large difference in impulse response as- 
sumed in the model and its'effects on summation behavior 
seen in the data. This analysis requires a radical reevalua- 
tion of the temporal processing of spatial stimuli to have a 
relatively invariant integration time across spatial frequen- 
cy but to differ in the effects of probability summation 
according to changes in temporal impulse response. Note 
that this conclusion is independent of the presence of a 
second level of integration and of the small differences be- 
tween the two models at  the @ values produced by our ob- 
servers. 

The conclusion that critical duration is almost invariant 
with spatial frequency a t  threshold is consistent with evoked 
potential latency data. Kulikowskiz showed that the peak 
latency remains constant with spatial frequency from 5 to 20 
c/deg when stimulus contrast is scaled to an equal ratio with 
respect to contrast threshold. This is in accord with our 
psychophysical result that a t  threshold the integration time 
is almost invariant with spatial frequency. 

C. Interpretation of Temporal Integration Functions 
To  provide a fuller insight into the interpretation of tempo- 
ral integration functions, we ask what implications their 
form carries for the shape of the temporal impulse responses 
under the assumptions of our model. Once again, these 
considerations are based on the short-duration results and 
are independent of the presence of the second level of inte- 
gration, although its effects are shown for completeness. 

Figure 8 shows the simulations already displayed in Fig. 
5b together with the intercepts of their asymptotic values 
and the impulse responses used to generate them. I t  can be 
seen that, while the critical duration is insensitive to the /3 
parameter for monophasic impulse responses (Fig. 8a), it 
varies with ,B for biphasic impulse responses (Fig. 8b). For a 

TIME (rnsec) 

Fig. 8. Illustration of the relation between critical-duration estimates and features of the impulse responses on which they depend (see text). 
Note that impulse responses are now displayed on a logarithmic abscissa, which causes an apparent distortion in their form. 
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perfectly symmetrical impulse response having no delay 
with respect to the onset of the stimulus, the intersection 
point would correspond both to the width a t  half-height of 
this impulse response and to the time a t  which it reaches its 
peak. In fact, the monophasic and biphasic impulse re- 
sponses displayed in Fig. 2 show a period of no apparent 
response of approximately 9 msec, which must be taken into 
account when the time to peak is considered. This impulse- 
response delay is implicit in the form of the impulse response 
and is not related to an absolute transmission delay of the 
impulse response relative to the stimulus, which is unmea- 
surable by threshold techniques. The impulse-response de- 
lay forms one of the many components of the reaction time. 

As a consequence of the impulse-response delay, the peak 
of the impulse response should be longer than its width by 9 
msec. Figure 8a shows that this is approximately the case 
for the monophasic impulse response: critical duration = 40 
msec, width = 33 msec, peak a t  39 msec. The asymmetry of 
the monophasic impulse response is such that, in practice, 
the critical duration rc can be expressed as 

~~(monophasic)  -- width + delay -- peak time. ( l l a )  

For a biphasic impulse response the situation is more 
complicated. The weight given to the positive and the nega- 
tive lobes in the integration process will depend heavily on 
the nonlinearity of this integration. For very high values of 
p the low-amplitude, negative lobe of the pulse response will 
become negligible with respect to the high-amplitude, posi- 
tive lobe. The critical duration should thus again be equal 
to the width a t  half-height of the first lobe of the impulse 
response. Figure 8b shows a rather good agreement with 
this hypothesis: critical duration = 26 msec; width = 24 
msec. 

However, a t  low and intermediate /3 (more typical of the 
actual slopes of measured psychometric  function^^.^^) the 
asymmetry of the biphasic impulse response will be such 
that the critical duration will depend on the weighted contri- 
bution of its positive and negative lobes through the nonlin- 
ear integration stage. For the extreme case of @ = 1, the zero 
crossing of the impulse response (at 52 msec) will coincide 
with the peak of its integral, and hence the critical duration 
will be equal to 52 msec (Fig. 8b) by the same logic as for the 
monophasic case but applied to each lobe of the pulse re- 
sponse. The critical duration for our biphasic impulse re- 
sponse can thus vary between a minimum of 24 msec and a 
maximum of 52 msec when P varies from infinity to 1: 

width (P = a) < ~~(b iphas ic )  < zero crossing (P = 1). ( l l b )  

Although for intermediate values of P the intercept will be 
difficult to interpret precisely, it is possible to use the em- 
pirical data to estimate both the peak time and the zero 
crossing if an independent measure of /3 is available. The 
data may then be fitted to one of the family of curves in.Fig. 
8b. The width of the positive lobe may be read from the 
curve corresponding to the highest 0, while the zero crossing 
is given by the intercept of the curve for ,B = 1. 

D. The Double-Integrator Model 
The double-integrator model that we have developed ac- 
counts satisfactorily for many features of the data. Addi- 
tion of the second stage of integration significantly improves 

the fit to the data for all four conditions." Even without the 
present result, development of the double integrator is justi- 
fied a priori by the much larger discrepancies from a single- 
integrator model found by previous investigations under 
low-spatial-frequency conditions (Fig. 1). The need to ac- 
count for these discrepancies led several inve~tigatorsl"l*~~ 
to propose more complex models, but their approach was 
inadequate, as is discussed in Subsection 2.C (Diode Mod- 
els). 

E. Conclusion 
The contrast thresholds measured for short-duration grat- 
ings conformed to the complete summation hypothesis of 
Bloch's law for contrast up to about 20-msec duration. This 
confirms that it is necessary for the short-duration asymp- 
tote to have a slope of -1 in double logarithmic coordinates, 
as opposed to the arbitrary slopes used by most previous 
investigators. At medium durations, the behavior of the 
data is well predicted by nonlinear integration models in 
which the power of the nonlinearity is derived from the 
steepness of the psychometric function. These observations 
lead to a theoretical definition of the critical duration that 
bears a direct relationship to several features of the visual 
impulse response. 

Our analysis shows that the critical durations a t  the ex- 
tremes of the spatial-frequency spectrum differ only to the 
extent that the inhibition present a t  low spatial frequencies 
is absent at  high spatial frequencies. No variation in the 
excitatory component of the impulse response is required to 
fit the data, which therefore do not support the contention 
that transient, low-spatial-frequency-selective mechanisms 
are significantly faster than sustained, high-frequency-se- 
lective ones. We conclude that the only change with spatial 
frequency that influences the form of the threshold-dura- 
tion function for contrast is the ratio of excitation to inhibi- 
tion in the initial impulse respone of the system. For our 
experimental conditions the critical duration changes by less 
than 10 msec (from 33 to 40 msec on average) from low to 
high spatial frequencies. 
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