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In distinct experiments we examined memories for orientation and size. After viewing a randomly oriented Gabor patch (or a
plain white disk of random size), observers were given unlimited time to reproduce as faithfully as possible the orientation
(or size) of that standard stimulus with an adjustable Gabor patch (or disk). Then, with this match stimulus still in view, a
recognition probe was presented. On half the trials, this probe was identical to the standard. We expected observers to
classify the probe (a same/different task) on the basis of its difference from the match, which should have served as an
explicit memory of the standard. Observers did better than that. Larger differences were classified as ‘‘same’’ when probe
and standard were indeed identical. In some cases, recognition performance exceeded that of a simulated observer subject
to the same matching errors, but forced to adopt the single most advantageous criterion difference between the probe and
match. Recognition must have used information that was not or could not be exploited in the reproduction phase. One
possible source for that information is observers’ confidence in their reproduction (e.g., in their memory of the standard).
Simulations confirm the enhancement of recognition performance when decision criteria are adjusted trial-by-trial, on the
basis of the observer’s estimated reproduction error.
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Introduction

In conventional recognition experiments, observers
try their best to remember a standard stimulus, but
memory is not perfect. The precision of those memories
may be inferred from their recognition responses using
Signal Detection Theory (SDT) (Green & Swets, 1966),
but with one crucial assumption; namely that observers
use the same decision strategy (i.e., criterion) on every
trial. Sophisticated theorists (notably Wickelgren,
1968) have already acknowledged that decision criteria
may fluctuate. The problem remains that this fluctua-
tion is indistinguishable from memory noise in most
paradigms. Evidence that decision criteria depend
systematically on trial-by-trial feedback was first
presented by Tanner, Rauk, and Atkinson (1970).
Treisman and Williams (1984) later codified several
previously reported sequential effects in their Criterion
Setting Theory. Our own research is situated within this
alternative tradition. We introduce a paradigm in
which criterion fluctuation demonstrably improves
recognition performance.

In our paradigm, criterion fluctuation can be
advantageous only if it complements a similar fluctu-
ation in the precision of memory. After 150 years (see
p. 82 of Fechner, 1860 & 1966), this idea of variable
precision is only now finding its way into signal-
detection models (notably that of van den Berg, Shin,
Chou, George, & Ma, 2012). To get a handle on the
trial-by-trial fluctuation in memory noise, we required
observers to match their memory of each standard with
an adjustable stimulus. We then computed the best
possible recognition performances, assuming that
reproduction errors reflected a memory noise with
constant precision. The fact that our observers’
recognition performances exceeded these predictions
allows us to infer that memory noise has variable
precision. This would be insufficient to allow better-
than-prediction recognition if observers’ decision crite-
ria did not covary with their memory noise.

Our empirical approach (summed up in the Abstract
and detailed in the Methods) consisted of a matching
(recollection) task followed by a same/different (recog-
nition) task. This approach allows us to characterize
decision strategies for recognition with respect to
explicit representations of the imperfectly recollected
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standards. Such a feat is impossible with standard yes/
no procedures. As will be shown, our observers’
decision behavior is consistent with a doubly stochastic
memory noise model where observers modulate their
decision criterion in the recognition phase in inverse
proportion with their confidence in their match. To our
knowledge, the present experiments are the first to
provide empirical evidence of a systematic, trial-by-trial
modulation of recognition strategy in accordance with
observers’ confidence in each memory of the standard
stimulus.

Methods

Units

In this paper, all Gabor orientations (s, m, m0, and p;
see below) have units of degree, clockwise with respect
to horizontal. All disk sizes (also s, m, m0, and p) are
quantified as logarithms (base 10) of diameter.

Stimuli

Gabor patches or white disks (see Figure 1) were
presented on a 15’’ MacBook Pro computer at a
comfortable viewing distance of about 0.5 m. At this
distance, each Gabor was centered 38 of visual angle to
the left or right of a central fixation spot. The white
disks were displayed at the same mean eccentricity but
their positions were randomly jittered, across and
within trials, 618. Each Gabor was the product of a
sinusoidal luminance grating and a Gaussian lumi-
nance envelope. The grating had a spatial frequency of
1.5 cycles per degree and a random spatial phase. The
Gaussian envelope had a space constant (r) of 0.5
degrees of visual angle. Both grating and envelope had

maximum contrast. The white disks had a luminance of
260 cd/m2. Stimuli were presented on a grey, 60 cd/m2

background.

Procedure

On each trial, the standard, a randomly oriented
Gabor (or a random size white disk), was briefly (200
ms) presented on one side of fixation. The observer
then attempted to reproduce its orientation (or size, s)
by manipulating another stimulus (the match), subse-
quently presented on the opposite side of fixation. Just
like the standard, the match’s initial orientation (or
size, m0) was randomly selected from a uniform
distribution over all orientations (or diameters between
1.58 and 3.08). Each press of the ‘‘c’’ key rotated the
match 28 anticlockwise (or reduced its diameter by 2%)
and each press of the ‘‘m’’ key rotated it 28 clockwise
(or increased its diameter by 2%).1 Gabor phase was
randomly reselected with each keypress. To indicate
satisfaction with the match’s orientation (or size, m),
the observer pressed the space bar, initiating the trial’s
second, recognition phase. With the match still in view,
a probeGabor (or disk) was presented at the location of
the standard. On 50% of trials the orientation (or size,
p) of the probe was identical to s. In the remaining trials
the orientation (or size) of p was changed with respect
to s by a value, 6Ds.2 The value of Ds was held
constant within each block of trials. In the orientation
experiment, Ds took values of 38, 58, 78, 148, and 218. In
the size experiment, Ds took values of 0.04, 0.06, and
0.08. Observers had to classify p as either ‘‘same’’ or
‘‘different’’ with respect to their memory of s. No
feedback was given. Observers performed two blocks of
100 trials at each level of difficulty in a random order.
Two additional 50-trial blocks (one with Ds ¼ 38, the
other with Ds ¼ 58) were run by the last author in the

Figure 1. Spatiotemporal layout of the displayed and matched stimuli in the orientation (a) and size (b) experiments. In this diagram the

size of the fixation cross and its distance from the standard have been scaled to twice their actual values.
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orientation experiment and were included in all
subsequent analyses.

Observers

Two authors and two naı̈ve observers were run in the
orientation experiment. The same two authors and
three naı̈ve observers (one of which, KM, also
participated in the orientation experiment) were run
in the size experiment.

Results

Gross indices of reproduction can be obtained by
computing the standard deviation of each observer’s
matching errors (s – m). Across observers, these indices
had a mean and standard deviation (SD) of 9.68 and
0.78, respectively, for orientation,3 and 0.048 and 0.013,
respectively, for size (see Tables SM1 and SM2 in
Supplementary material). Comparable values for ori-
entation have been obtained under similar conditions
(e.g., Tomassini, Morgan, & Solomon, 2010), but more
precise reproduction has also been reported with
different stimuli and procedures (e.g., Vandenbussche,
Vogels, & Orban, 1986). Comparable values for size
have also been obtained under similar conditions (e.g.,

Solomon, Morgan, & Chubb, 2011; note that the value
0.048 corresponds to a Weber fraction of 12% for
diameter).

Better indices of reproduction can be obtained by
segregating variable error from constant error. This
segregation is described in detail in Appendix A. Here,
we merely offer the following summary: the variable
error for orientation depended upon the standard
orientation, such that the error tended to be larger
when the standard was further from the cardinal axes.
This finding has been coined the oblique effect (e.g.,
Appelle, 1972). The variable error for size, on the other
hand, neither increased nor decreased with standard
size. This invariance with standard size has become
known as Weber’s Law (Fechner, 1860 & 1966).

Figures 2 and 3 present all of the raw recognition
data (in the orientation and size experiments, respec-
tively), together with simulated data (bottom row in
each figure) from the variable precision model de-
scribed below. Each panel shows the 200 ‘‘same’’ (blue
symbols) and ‘‘different’’ (red symbols) responses
obtained from a single observer at a single level of
difficulty (Ds).

If the recognition process accessed only the very
same information as that used during the reproduction
phase, then recognition performance should depend
exclusively on the difference p – m. As an alternative to
this (null) hypothesis, we considered the possibility that
observers’ same/different decisions also depended upon

Figure 2. Orientation experiment. Distributions of ‘‘same’’ and ‘‘different’’ responses (blue and red symbols respectively) of each of the

four observers (top four rows of panels) and of a variable precision model (bottom row) as a function of the orientation difference (p – m)

between probe and match for each of the five difficulty levels (columns) and for the cases where p . s, p¼ s, and p , s (rows of symbols

from top to bottom within each panel). Each panel in the top four rows shows 200 responses/trials. Each panel in the bottom row shows

2000 simulated trials. Each regular hexagon connects the points where Pr(‘‘same’’) ¼ Pr(‘‘different’’), i.e., the decision criteria, as

estimated from a maximum-likelihood fit of two cumulative Normal distributions (see text).
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probe identity (i.e., the difference p – s). As will be
discussed below, an interaction between p – m and p – s
may have arisen from observers modulating their
decision criteria according to their confidence in each
match.

To evaluate these hypotheses, we analyzed observers’
responses separately for p ¼ s trials and p 6¼ s trials.
(Within each panel, p ¼ s trials are represented by the
middle row of symbols; p 6¼ s trials are represented by
the top and bottom rows.) For each observer,
recognition responses were also segregated according
to the level of difficulty (Ds). They were then maximum-
likelihood fit with psychometric functions based on the
cumulative Normal distribution:

Prð‘‘different’’Þ ¼ U ðjp�mj � lÞ=r½ � ð1Þ
Finally, a series of hypotheses regarding the decision
criterion (l) and the SD of its fluctuation (r) were
subjected to chi-square tests based on the generalized
likelihood ratio (Mood, Graybill, & Boes, 1974). In the
data from both experiments, we found significant (at
the a ¼ 0.05 level) changes in the criterion with

observer, difficulty, and probe identity, but changes in
the standard deviation of its fluctuation were significant
only when observer and difficulty changed, not when
the probe identity changed. Therefore, we constrained
rP 6¼S ¼ rP¼S for all of our fits. The best-fitting
parameter values are available in Supplementary
Material.

In Figures 2 and 3, each hexagon connects the
derived decision criteria, l (i.e., the p – m values
yielding equal proportions of ‘‘same’’ and ‘‘different’’
responses).4 With one exception out of 20 cases in the
orientation experiment (HLW, Ds ¼ 38) and two
exceptions out of 15 cases in the size experiment
(JAS, Ds ¼ 0.06 and PS, Ds ¼ 0.04) all hexagons are
convex. Their convexity indicates that observers were
less inclined to (incorrectly) say ‘‘different’’ when p¼ s
than when p 6¼ s, whatever the p – m difference. Hence,
they did not exclusively base their recognition judgment
on the difference between p and m (in which case the
hexagons would have had vertical sides). We can
therefore reject our null hypothesis and conclude that
recognition must have taken advantage of some

Figure 3. Size experiment. Notation and symbols are as in Figure 2. Data are shown this time for five observers (first five rows of panels)

together with the simulations from the variable precision model (bottom) row. As for the orientation experiment, the three rows of data

(blue and red symbols) in each panel are for the cases where p . s, p ¼ s, and p , s.
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additional information, which was not used for
reproduction.

To quantify the advantage of that additional
information, we can compare each observer’s overall
performance in the recognition phase (red symbols in
Figure 4) with the performance of a psychometrically
matched observer not privy to any such information.
The latter performance (green symbols) was computed
using decision criteria that were sampled at random
from the Normal distribution equal to the two-
parameter psychometric function (i.e., lP6¼S ¼ lP¼S ¼
l and rP 6¼S ¼ rP¼S ¼ r in Equation 1) that best fit the
human observer’s data. Each green symbol in Figure 4
shows the psychometrically matched observer’s overall
performance after 1000 trials with each of the human
observer’s 200 matching errors. In 18 of 20 cases (the
exceptions were KM, Ds ¼ 58 and HLW, Ds ¼ 38) our
human observers’ performances exceeded those of
psychometrically matched model observers (i.e., signif-
icantly more than 50%, using a binomial test; P ,
0.001). We must infer that the two-parameter psycho-
metric functions did not capture all of the information
used by our human observers in the recognition task.
Not only were their decisions based on something
besides jp – mj, that additional information enhanced
overall performances. In the size experiment, human
recognition performance (Figure 5, red symbols) was
better than that of psychometrically matched observers
(green symbols) in 13 of 15 cases (i.e., also significantly
more than 50%; same test; the exceptions were PS, Ds¼

0.04 and Ds ¼ 0.08). A description of the blue and
yellow symbols appears below, under Regression-based
Models.

The fact that our human observers out-performed
psychometrically matched observers implies that the
former used information besides jp� mj when deciding
‘‘same’’ or ‘‘different.’’ We will now demonstrate that
the present recognition results are consistent with an
observer whose criterion varies from trial-to-trial with
the precision of each memory trace. Although we have
no evidence that this criterion placement reflects a
conscious strategy, we will use the term confidence to
describe the underlying variable. When observers are
confident that their still-visible match is good (i.e., close
to the standard), they effectively label all but the most
similar probes as ‘‘different.’’ When observers have low
confidence in their match, they show a greater
willingness to accept some of those same probes as
‘‘same.’’

Of course, if observers’ confidence in each match
bore no relation to its actual accuracy, then we would
not expect any advantage of a trial-by-trial decision
criterion modulation in the recognition task. Therefore,
as an initial investigation into the viability of our idea,
we refit the aforementioned psychometric functions
when recognition decisions were segregated into two
equal-sized subsets: those following large matching
errors and those following small matching errors.
Fitting psychometric functions to each of these subsets
separately (see Appendix C) confirmed that our

Figure 4. Measured (red symbols) and predicted orientation recognition accuracy as a function of task difficulty (s – p ¼ Ds) for four
observers and the variable-precision model (simulation; see section: The variable-precision, ideal-observer model). Predicted accuracies

were obtained from three hypothetical observers subject to the same matching errors. One of these observers (green symbols) adopted

criteria sampled at random from Normal distributions equal to the best fitting psychometric functions of jp – mj. Another observer (blue
symbols) adopted the single most advantageous criterion with respect to jp – mj. The third hypothetical observer (dark yellow symbols)

adopted the most advantageous criteria, not only with respect to jp – mj, but also with respect to the human observer’s expected matching

error (as determined from the regression analyses in Appendix A), given the effects of standard (s) and starting (m0) orientations. Red and

green symbols have been nudged leftward and blue and yellow symbols have been nudged rightward to facilitate legibility.
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observers adopted larger criterion values of jp – mj
when their matching errors were large. This is in line
with studies reporting that confidence (at the time of
the test) and accuracy are based (at least partly) on the
same source of information (such as memory strength;
Busey, Tunncliff, Loftus, & Loftus, 2000) and that
subjects have (conscious or unconscious) access to the
fidelity of their memory (the trace access theory; Hart,
1967; Burke, MacKay, Worthley, & Wade, 1991).

The variable-precision, ideal-observer model

To demonstrate that a greater reluctance to say
‘‘different’’ when memory fidelity is low translates into
an advantage for recognition over the case where
observers’ same/different responses are independent of
their confidence, we simulated the performance of an
observer whose matching errors (s – m) were randomly
selected from a an inverse Gamma distribution:5

Let s – m ; N(0, Y), where Y ; Inv-Gamma(a, b), a
. 1, b . 0.

Essentially, this means that memory noise (or some
correlated variable such as confidence) fluctuates from
trial to trial. We selected an inverse Gamma distribu-
tion for Y as a matter of convenience. For one thing, all
samples from it are positive, a requirement for
variances. Furthermore, integrating over all possible
values of Y yields a relatively familiar distribution for s
– m: the non-standardized version of Student’s t. When
the inverse Gamma distribution is described by shape
and scale parameters a and b, respectively:6

varðs�mÞ ¼ b

a� 1
; ð2Þ

which is guaranteed to be greater than zero. Although
this formula contains two parameters, we really have

only one free parameter, because var(s – m) is
something we measure:

b ¼ ða� 1Þvarðs�mÞ ð3Þ
We can approximate ordinary Signal Detection Theory
by adopting a large value for a. Fluctuations in
memory noise will be largest when we adopt a small
value for a.

We simulated the behavior of the ideal observer (see
Appendix B), who adopts the most advantageous
criterion on each trial, given that trial’s sample of Y.
The one free parameter in our model is a. As noted
above, it describes the shape of the variance distribu-
tion. For the simulations illustrated in Figures 2-5, we
selected a ¼ 2. For Figure 2 and 4: b ¼ (108)2. For
Figure 3: b ¼ (0.04)2.

Just like our human observers, this variable-preci-
sion ideal observer selected larger criteria (on average)
when p¼ s. Consequently, psychometric fits to its data
form hexagons, when plotted in the format of Figures 2
and 3. As can be seen from the red symbols in Figures 4
and 5 (simulation panels), the model’s overall perfor-
mance is similar to that of our human observers. It also
exceeds that of a psychometrically matched observer
(green symbols) by an amount similar to that seen in
our human observers’ data.

Regression-based models

The main point of our paper is that decision
strategies covary with uncertainty, which fluctuates
over trials. A separate but interesting issue is the degree
to which uncertainty fluctuations are due to external
factors such as the oblique effect. Once that question
has been answered, any remaining variability must be
ascribed to internal factors such as arousal and

Figure 5. As in Figure 4, but for the size experiment and five observers.
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attention (Shaw, 1980). We are not in a position to
unequivocally measure the influence of external factors,
nonetheless we believe that the regression models
described in Appendix A represent a good first step in
that direction. They provide estimates for the precision
(the reciprocal of variable error) of each observer’s
memory given any values of s and m0.

To see how well our observers could have done,
given knowledge of these external effects on uncertain-
ty, we simulated the recognition behavior of model
observers whose memory noise was affected in the same
way by s and m0. These regression-based model
observers adopted ideal criteria on the basis of each
trial’s combination s and m0.

We have illustrated the performances of these
regression-based models using dark yellow symbols in
Figures 4 and 5. In 20 of 34 cases these performances
were inferior compared to the human performances
from which they were derived. (There was one tie.) This
result suggests, in these 20 cases at least, that some
uncertainty fluctuation should be ascribed to internal
factors, and that our observers were able to adjust their
criteria in concert with these fluctuations.

The question remains whether our human observers
were able to exploit the systematic variations in their
matching errors, which were revealed by our regression
analyses, for the purposes of making better recognition
responses. To address this question, we correlated their
responses with those of the aforementioned regression-
based models, as well as with the responses of another
model observer, whose criteria were fixed with respect
to jp – mj, but otherwise ideal, i.e., they optimized
overall performance, given the sample variance in each
condition’s matching errors (i.e., Var[s – m]).

Any excess correlation between our observers’
responses and those of the regression-based models
(relative to the ideal fixed-criterion model) would
indicate at least some criterion adjustment on the basis
of external factors. As can be seen in Table 1, excess
correlation was present in just three out of nine cases.
In no cases did the two correlations differ by more than
(0.03). Thus we have little evidence in favor of our
observers exploiting the oblique effect or other external
influences on the precisions of their memories when
adjusting criteria for recognition. Therefore, we would
like to suggest that the bulk of their uncertainty-based
criterion fluctuations (Shaw, 1980) were due to internal
factors (e.g., attention and arousal).

As neither the variable-precision ideal-observer’s
constant errors nor its variable errors could have been
affected by either s or m0, we felt a regression analysis
of its data would be unnecessary. That is why there are
no yellow symbols in the simulation panels of Figures 4
and 5, and that is why there are two empty cells in
Table 1. On the other hand, we did feel it would be
interesting to correlate the variable-precision model’s

recognition responses with those of the fixed-criterion
otherwise-ideal observer. Those correlations (0.743 and
0.753) were quite a bit higher than any derived from
our humans’ data. This suggests that some criterion
fluctuation is independent of uncertainty.

Discussion

The present experimental paradigm, consisting in the
successive measurement of reproduction and recogni-
tion performances, allowed the assessment of the trial-
by-trial decisional behavior in recognition of two stored
visual features, orientation and size. Our results show
that recognition is better than can be expected from the
prior explicit retrieval of the standard (through
reproduction) under the usual assumption that subjects
use a single decision criterion: the decision criterion for
a different response when probe and standard were
actually the same was more stringent (i.e., required a
larger difference between the probe and the visible
match) than when the probe and standard were not the
same.

Our data support the view that observers do not
maintain stable criteria for recognition. It should be
understood that the observed criterion changes are not
the consequence of the probe presentation but are
modulated prior to it according to observers’ confi-
dence in their match. In its turn, the latter is related to
the noisiness of the memory trace (or of the coding
process) as reflected by the difference between match
and standard. When the probe is identical to the
standard (i.e., signal trials), absolute differences be-
tween standard ( ¼ probe) and match are a direct
reflection of this noise (memory strength or coding
efficiency, hence of the confidence) associated with that

Experiment Subject Regression Fixed criterion

Orientation AG 0.641 0.656

JAS 0.654 0.672

KM 0.705 0.699

HLW 0.654 0.65

Simulation 0.743

Size AG 0.535 0.526

KM 0.655 0.665

JAS 0.589 0.629

FL 0.531 0.55

PS 0.623 0.633

Simulation 0.753

Table 1. Correlations between human recognition responses and

those of two model observers derived from human matching data.

Correlations between the variable-precision ideal-observer’s

recognition responses with those of the fixed-criterion ideal-

observer are also provided.
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trial (Busey et al., 2000). Thus, large differences
between probe and match will be associated with large
criterion settings. When the probe differs from the
standard, probe vs. match differences will be less
correlated with the memory/coding noise and hence
will not correlate with observers’ criteria (see also
footnote 5). As a consequence, both data and modeling
show that observers uniformly demonstrate a greater
willingness to accept probes as identical to the standard
when they really are, regardless of their similarity to the
match.

Simulations confirm that such criterion-setting strat-
egy is consistent with a modulation of the recognition
decision behavior in accord with observers’ confidence
in the fidelity of their prior reproduction of the
standard. Recent studies demonstrate that such confi-
dence can be coded on a trial-by-trial basis (e.g.,
Denève, 2012) by both parietal (Kiani & Shadlen, 2009)
and midbrain dopamine neurons (de Lafuente &
Romo, 2011). Further evidence favoring this model is
the fact that observers adopt higher decision criteria
when the differences between standard and match are
large, i.e., for less accurate reproductions presumably
associated with lower confidence levels. This finding
supersedes the possibility that the observed advantage
of human’s recognition over an ideal observer using a
unique decision criterion was due to the fact that our
probe was presented at the same retinal location as the
standard, while reproduction was performed at a
different location (Dwight, Latrice, & Chris, 2008).
Running the whole experiment with probe and match
locations swapped would provide a direct test of this
conjecture and is one of our future experiments.

Our modeling of the present results is based on two
critical premises. The first premise is that the storage
(or coding) of visual features is a doubly stochastic
process. While this premise cannot be tested directly, it
has recently received strong support from a study (van
den Berg et al., 2012) having tested four memory
models, of which the one positing a variable precision
across trials provided the best fits to human perfor-
mance in four sets of experiments. These experiments
involved either estimating the color or orientation of
one among N memorized items or localizing the change
in a color or orientation among N locations. Neuro-
physiological studies support the notion of a variable
noise (typically attributed to attentional fluctuations)
and of its trial-by-trial impact on the decision behavior
(Cohen & Maunsell, 2010; Churchland, Kiani, Chaud-
huri, Wang, Pouget, & Shadlen, 2011; David, Hayden,
Mazer, & Gallant, 2008; Nienborg & Cumming, 2009).

Our second premise is that, consciously or not,
recognition strategies vary from trial-to-trial with
memory precision. In standard SDT (Green & Swets,
1966; Macmillan & Creelman, 2005), observers set their
decision criterion within a few trials and stick to it

inasmuch as the internal and decision noise permit.
Confidence is thought of as reflecting the distance
between the current internal response and this criterion,
the rationale underlying Receiver Operating Charac-
teristics (ROC) functions. In the context of the present
memory task, we propose the inverse scheme whereby,
based on a trial-by-trial estimation of the memory trace
strength (or noisiness), confidence is established first,
and the criterion is set accordingly: the lower the
confidence, the higher the criterion. This sequence
implies a variable-precision memory trace with this
precision (or some correlated variable) accessible on
each trial (e.g., Denève, 2012; Hart, 1967; Burke et al.,
1991; Koriat, 1993, 1995). Future experiments are
needed to establish the empirical link between noise
and confidence.

Our data and analyses do not allow an unequivocal
distinction between internal and external effects on
uncertainty. We constructed models for how matching
errors (in particular, their variances) might depend on
the external factors of starting error and standard value
(i.e., the oblique effect). According to these models, the
external influences on uncertainty were not large
enough to fully account for the observed criterial
fluctuations. Nonetheless, alternative models can be
formulated. If such models can account for more of the
variance in matching errors, then it is possible they
might also account for more, if not all of the criterial
fluctuation apparent in our data. However, the main
point of our paper would remain valid, namely that
recognition criteria co-vary with uncertainty, and
uncertainty fluctuates over trials.7

In conclusion, the present study has revealed a
decisional mechanism by means of which recognition
improves over predictions based on reproduction
performances. Our simulations confirm that an observ-
er who relies on his confidence in his memory’s fidelity
to adjust his recognition strategy is more inclined to say
‘‘different’’ when a to-be remembered standard and
probe actually are different. This was the behavior of
our observers.
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Footnotes

1Perfect matches (i.e., where m¼ s) were consequent-
ly impossible, but note that these step sizes were much
smaller than the average matching error (i.e., SD[s –
m]).

2In other words, p � {s – Ds, s, s, þ Ds}. However,
due to a programming error in the size experiment, for
observers AG and KM (not the others) p � {sþ log(2-
10DS) s, s, þ Ds}. As can be seen from Figure 3, s þ
log(2-10DS) is very similar to s – Ds.

3In this paper, all angles (such as s – m) are signed,
acute, and analyzed arithmetically. For comparison,
the average SD of our axial data (Fisher, 1993; pp. 31–
37) was 2.6.

4The frequency of trials in which sgn(p – s)¼ sgn(p –
m) naturally decreases as Ds increases. Nonetheless,
using the aforementioned chi-square test, in almost
every case we confirmed that there would be no
significant increase in the maximum likelihood of
cumulative normal fits when one set of parameter
values (l and r) was used for those trials and another
set was allowed for the remaining p 6¼ s trials. [The sole
exception was JAS’s size data with Ds ¼ 0.06. In this
condition, JAS responded ‘‘same’’ on all 13 trials for
which sgn(p – s) ¼ sgn(p – m).] Consequently, it seems
reasonable to use a single set of parameter values for all
of the p 6¼ s trials in each panel, and that is why each
hexagon is regular.

5It may be easier to first consider an observer with a
more extreme case of nonstationarity. This observer
either perfectly remembers (R) or entirely forgets (F)
the standard S. In the former case, his response will be
‘‘same’’ for p¼ s trials and ‘‘different’’ otherwise. When
this observer forgets, he will respond randomly whether
p¼ s or not. The probabilities of a ‘‘different’’ response
when p¼ s and p 6¼ s are then given by:
Pr(‘‘different’’ p¼ s)¼ Pr(p¼ s, F) · Pr(‘‘different’’jF)
p(‘‘different’’ p 6¼ s) ¼ Pr(p 6¼ s, R) þ Pr(p 6¼ s, F) ·
Pr(‘‘different’’jF)
¼ Pr(p 6¼ s, R) þ Pr(p ¼ s, F) · Pr(‘‘different’’jF)
. Pr(‘‘different’’ p¼ s).

6In these equations we use varX to denote the
squared SD of X.

7It is worth pointing out that, ultimately, from both
a conceptual and computational point of view internal
and external noises are (or can be made) equivalent
(Ahumada, 1987; Pelli, 1990).

8When modelling the performance of AG and KM in
the size experiment, a slightly different decision rule
was required, due to the fact that jp� sj could assume
one of three values (see footnote 2). In this case, the

decision rule was: respond ‘‘same’’ if and only if CL , p
� m , CH. Numerical methods were used to find the
negative and positive criteria (CL and CH, respectively)
that maximised Pr(Correct).
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Appendix A

We begin in this Appendix with the size experiment
because the regression models are more straightfor-
ward. Orientation will be discussed below. Specifically
we used standard linear regression to model constant
error in the size experiment. Constant error can be
thought of as an adjustment bias. It is the average
matching error (s – m) for any given combination of
standard size s and starting size m0:

s�m ¼ c0 þ c1sþ c2m0 þ c3sm0 þ ec; ðA1Þ
where c0, c1, c2, and c3 are arbitrary constants. The
residual matching error (for which the other terms do
not account) is contained in the term ec. Note this
model contains the possibility of an interaction between
the factors s and m0. For each observer, Equation A1
was simultaneously fit to all matches. Analyses of
variance (ANOVA) indicate significant effects (P ,
0.05) of starting size in the data from all observers,
significant effects of standard size in the data from
three observers (KM, JAS, and FL), and significant
interactions in the data from no observers.

To model the variable error, the squared residuals in
Equation A1 were also subject to linear regression:

e2c ¼ t0 þ t1sþ t2js�m0j þ t3sjs�m0j þ em: ðA2Þ
This model assumes that the squared variable error is
linearly related to the starting error js – m0j, not to m0.
Consistent with Weber’s Law, ANOVA failed to turn
up a significant difference between v1 and zero for any
observer. The same thing occurred for the coefficient of
interaction v3. On the other hand, four of our five
observers (JAS was the exception) had significant
effects of starting error.

Figure A1 shows scatter plots of the size matching
errors. The solid lines illustrate how each observer’s
constant error depends upon the standard size. Dashed
curves show two variable errors (i.e., 2 SDs) about the
constant error.

The model for constant error in the orientation
experiment was previously used for similar purposes by
Tomassini, Morgan, and Solomon (2010):
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s�m ¼ c1sgnðsÞ
�
sin 4jsj � sin� 1ðc2Þ½ � þ c2

�
þ ec:

ðA3Þ
In this expression, the parameter c1 determines the
overall error size and the parameter c2 determines the
(near intercardinal) orientations at which the tendency
for clockwise errors equals that for anti-clockwise
errors. To model the variable error, the residuals in
Equation A3 were fit with the following model:

jecj ¼ v0 þ v1

�
sin 2jsj � sin�1ðv2Þ
� �

þ v2

�
þ v3

�
sin 2js�m0j � sin�1ðv4Þ
� �

þ v4

�
: ðA4Þ

Note that there really is no firm theory behind either of
these equations. They are provided merely to produce
curves that illustrate the effects of standard orientation
and starting error. For example, in Equation A4, the
right-hand side is the sum of two full-wave rectified sine
functions, which has been elevated so that its minimum
is greater than zero. The fancy bit with the arcsine
allows each effect to reach its maximum at an arbitrary
orientation without moving the local minima away
from�90, 0, and 908. Large values of v1 correspond to
large oblique effects. For observers AG, JAS, KM, and
HLW, the best-fitting values for this parameter were 48,
68, 48, and 18, respectively. That is, some observers
(especially JAS) exhibited stronger oblique effects than
others (especially HLW).

Figure A2 contains scatter plots for orientation. As
in Figure A1, here the dashed lines contain two
standard deviations about the constant error. In this
case, both the expected error and its standard deviation
were modeled as (two-parameter) lines.

Appendix B

In all our modeling, we assume that each matching
error s – m is drawn from a zero-mean Gaussian
distribution having variance Y, i.e., s – m ; N(0, Y).
Furthermore, we assume that observers respond
‘‘different’’ if and only if jp � mj . C . 0 , where the
C is known as the criterion.8 In this Appendix we
describe how to calculate the best possible criterion cy
for any value of variance y (i.e., regardless whether or
not that variance itself is a random variable, as in the
variable precision model).

On half the trials, in which probe and standard are
identical, the probability density function of p – m is

Figure A1. Scatter plots of the five observers’ size errors (s – m) relative to the standard size s. Dashed curves contain two standard

deviations about each observer’s constant error (solid line).

Figure A2. Scatter plots of the four observers’ orientation errors (s

– m) relative to the standard orientation s. Dashed curves contain

two standard deviations about each observer’s constant error

(solid sinusoid).
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fp¼s(p – m)¼ 1/
ffiffiffi
y
p

/[(p – m)/
ffiffiffi
y
p

], where / is the Normal

probability density function. On the other half of the

trials, in which p¼ s 6 Ds, the density is fp 6¼s.(p – m)¼
1/2

ffiffiffi
y
p

{/[(p – m � Ds)/
ffiffiffi
y
p

] þ /[(p – m þ Ds)/
ffiffiffi
y
p

}.

An observer who adopts some arbitrary criterion c,

will be correct with probability 1
2 ½
R c
�c fp¼sðxÞdx� þ

1
2 ½1�

R c
�c fp 6¼sðxÞdx�.

Analytical methods (i.e., Mathematica) were used to

find that this function has its maximum at the value

cy ¼
y ln

�
e
ðDsÞ2
2y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ e

ðDsÞ2
y

q �

Ds
ðB1Þ

Appendix C

Figures C1 (and C2) show cumulative Normal
(Equation 1) fits to the responses of each observer in
the orientation (and size) experiment when segregated
according to whether the matching error js – mj was
smaller or larger than the median matching error (solid
and dashed curves, respectively). With two exceptions
(AG and KM with the two smallest Ds values) out of
the 20 cases (5 D · 4 Obs) for orientation and two
exceptions (JAS medium Ds; PS small Ds), dashed
curves are shifted to the right of the solid ones,
indicating that observers adopt higher criteria for larger
matching errors.

Figure C1. Cumulative Normal fits to the proportion of ‘‘different’’ responses vs. the jp – mj difference. Each panel in (a) shows the

maximum-likelihood fit (dashed curve) to half of observer HLW’s trials at a given level of difficulty (Ds). These trials are those producing

matching errors larger than the median js – mj. For the purposes of illustration, the data have been pooled within 48 bins. Error bars

contain 95% confidence intervals based on the binomial distribution. Each panel in the lower half of (a) replots the dashed curve from

above, along with the cumulative Normal fit (solid curve) to the other half of HLW’s data. Allowing these two fits to have different slopes

(not shown) did not significantly increase their joint likelihood. In (b) the corresponding fits are shown for the remaining three observers,

along with the binned data from trials with the most accurate matches (i.e., js – mj small).
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Figure C2. Cumulative Normal fits to the proportion of ‘‘different’’ responses vs. jp – mj. Each panel in (a) shows the maximum-likelihood

fit (dashed curve) to half of observer AG’s trials at a given level of difficulty (Ds). For the purposes of illustration, the data have been pooled

within 0.04 log unit bins. Everything else as in Figure C1.
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