
MOTION PERCEPTION. III



Computational Strategies

1. Feature Tracking

2. Spatiotemporal Correlation (Reichardt)

3. Motion Energy (Adelson and Bergen)

4. Sign of brightness gradients (Marr and Ullman)

5. Ratio of brightness gradients (Johnston et al)

6. Flow (Johnston et al)

Modelling



Motion as a sequence 

of frames (2 images/s)

Feature tracking

Motion “per se”

(24 images/s)



Dmax: Braddick (1974)

Dmax< Mvt_q Dmax> Mvt_q

Feature tracking



 Intuitive but..

 Problems

 You measure position not motion

 You only get the position of the features you track

 You have to match corresponding features across frames

 You have to convert spatial displacement into image speed

Feature tracking

Advantages / Disadvantages



MOTION AS CORRELATION



Spatio-temporal correlation

N = 43



N = 51p = 5/40

= .125

p = 6/35

= .17

p = 6/32

= .19

p = 37/37

= 1.00

Spatio-temporal correlation



I. Create a random dot image. 

II. Copy image side by side. 

III. Select a region of one image. 

IV. Shift (horizontally) this region 

and fill in the blank space left 

behind with the random dots 

to be replaced ahead.

The Random Dot Stereogram is ready. 

To “reveal” the “hidden” square 

the brain presumably computes 

the cross-correlation between 

the 2 images.

Cross-correlation in Stereopsis

(Julesz, 1961)
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Figure 1. The binocular fusion problem: in the simple case of the diagram shown on the left,

there is no ambiguity and stereo reconstruction is a simple matter. In the more usual case shown

on the right, any of the four points in the left picture may, a priori, match any of the four points in

the right one. Only four of these correspondences are correct, the other ones yielding the

incorrect reconstructions are shown in the purple shaded square.

Binocular disparity
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Figure 2. Eliminating 'false matches' in the stereo correspondence problem.

A random dot stereogram at the top shows left and right eyes' images for crossed

or uncrossed fusion (pair on the left or right respectively). Marr and Poggio's [10]

proposal for establishing correct correspondences between dots in the two eyes'

images is illustrated below, using only the dots highlighted in red (and dots from

the same region of the left eye's image). The algorithm requires matches to be

made between dots of the same colour, which gives rise to possible

correspondences at all the nodes in the network marked by an open circle.

Neighbouring matches with the same disparity support one another in the network,

illustrated schematically by the green arrows (in their paper, the support extended

farther). At the same time, matches along any line of sight (dotted lines) inhibit

each other (red lines with thickness proportional to inhibition strength) since a ray

reaching the eye must have come from only one surface. These constraints are

sufficient to eliminate all but the correct matches, shown here along the main

diagonal.

Figure 1. The binocular fusion problem: in the simple case of the diagram

shown on the left, there is no ambiguity and stereo reconstruction is a simple

matter. In the more usual case shown on the right, any of the four points in the left

picture may, a priori, match any of the four points in the right one. Only four of

these correspondences are correct, the other ones yielding the incorrect

reconstructions shown as small grey discs

Cross-correlation

in

Stereopsis



Figure 3. Horizontal cross-section of a disparity

space. The constraint of uniqueness is

implemented by letting all cells, along the two

lines of sight, inhibit each other.

Figure 4. Vertical cross-section of a disparity-

space. The constraint of continuity is

implemented by letting all active cells excite the

cells, in neighboring columns, that represent

similar binocular disparity.



The coincidence model (Jeffress, 1948)

Neurocomputational model (derived from Boring’s “neural place-theory”) explaining how

the auditory system might register and analyze small differences in the arrival time of

sounds at the two ears in order to estimate the direction of sound sources in the azimuthal

plane. Jeffress L. A. (1948). A place theory of sound localization," J Comp Physiol Psychol

41, 35-39



Spatio-temporal correlation (Reichardt, 1961)
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 Opponency enhances 

direction specificity

 Pairing “opposite” 

detectors can eliminate 

spurious activity

Takes Difference

Delay

Spatio-temporal correlation

+

Motion opponency

Delay

× ×



Elaborated Reichardt detector (Van Santen & Sperling, 1985)

Spatio-temporal correlation
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x delay

 Advantage – intuitive but..

 Disadvantages

 Tuned to temporal frequency (rather than speed)

 Not immediate – you have to wait for the traverse 

 Subject to aliasing/correspondence problems

 Phase dependent response

Spatio-temporal correlation

Advantages / Disadvantages



MOTION AS SPACE-TIME ORIENTATION



Motion as Orientation in space-time

1 2 3 4
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4

Phi

Reversed-Phi
(Anstis, 1970; Anstis & Rogers, 1975)
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http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/

http://www.michaelbach.de/ot/mot_reverse-phi/index.html

2-stroke

4-stroke

Phi

4-stroke

Rev-Phi

4-stroke

http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/
http://www.michaelbach.de/ot/mot_reverse-phi/index.html
Demos .avi/2-stroke_Matherl.avi
Demos .avi/Phi.avi
Demos .avi/Rev-Phi.avi
Demos .avi/4-stroke_Mather.avi


Two-stroke motion. (A) Illustrates standard apparent motion; (B and C) illustrate two-stroke motion. (A) A white rectangle shifts 

rightward from frame 1 to frame 2. When the two frames are presented repeatedly in alternation, they create an impression of to-and-

fro movement (arrows). (B) If a brief blank inter-stimulus interval (ISI) is inserted at the transition between frame 2 and frame 1, the 

direction of apparent motion during the transition reverses, so that presentation of the whole sequence creates an impression of

continuous forward motion (arrows). (C) If the blank ISI is inserted between frame 1 and frame 2, presentation of the whole sequence 

creates an impression of continuous backward motion (arrows)

George Mather

Two-stroke: A new illusion of visual motion based on the time course of neural responses in the human visual system

Vision Research, Volume 46, Issue 13, 2006, 2015–2018

http://dx.doi.org/10.1016/j.visres.2005.12.022



TEMPORAL FREQUENCY (Hz)
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Watson, Ahumada & Farrell (1986). J. Opt. Soc. Am. 3(3) 300-307.

THE WINDOW OF VISIBILITY



Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 

2, 284-299.

Motion as spatio-temporal texture
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Motion & Texture

(Gorea & Papathomas, 1991)

t

x



Motion & Texture

(Gorea & Papathomas, 1993)



Motion & Texture

(Gorea & Papathomas, 1997)



Motion “Energy”

Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of 

motion. J. Opt. Soc. Am. A 2, 284-299.

Motion is orientation in space-time

t

x



Motion “Energy”

Motion is orientation in space-time

Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of 

motion. J. Opt. Soc. Am. A 2, 284-299.



Motion “Energy”

Non-oriented Spatio-Temporal RF

Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of 

motion. J. Opt. Soc. Am. A 2, 284-299.



Motion “Energy”

Oriented, Phase independent Spatio-Temporal RF: “energy detectors”
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Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of 

motion. J. Opt. Soc. Am. A 2, 284-299.



Motion “Energy”

Building up an Oriented 

Spatio-Temporal RF

Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of 

motion. J. Opt. Soc. Am. A 2, 284-299.



ENERGY MODEL
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Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284-299.

Correlator  Motion “Energy”
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 Advantages – phase/polarity invariant

 Problems

 Individual filters measure the degree of match not the speed:

 For speed computation needs to interpret a population code

Motion “Energy”

Advantages / Disadvantages



Jump to

THE APERTURE PROBLEM 



In the white-noise approach to RF mapping, a rapid, pseudo-random stimulus sequence that consists of patterns of spots or

bars is presented, and the neuronal spike train is correlated to the stimulus sequence (that is, cross- or reverse-correlation).

The aim of this correlation procedure is to characterize the transformation that occurs between the visual stimulus and the

response of a neuron (that is, the neuron's 'transfer function'). Because stimuli are presented in rapid succession, without

pausing to collect the response to each pattern, this technique is fast.

Reverse Correlation - Physiology

Jones & Palmer (1987) J. Neurophysiol., 58, 1187-1211.

+Dt
Time



Reverse Correlation - Psychophysics
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Solomon (2002) J. Vision., 2, 105-120.



Receptive field (RF) spatial structure of the major classes 

of neurons in the geniculostriate pathway of the cat

Measured RF

(Rev. Correl.)

DeAngelis, Ohzawa & Freeman (1995). TINS, 18(10), 451-458.

Schematic RF
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Motion “Energy”

Non-oriented Spatio-Temporal RF

Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of 

motion. J. Opt. Soc. Am. A 2, 284-299.



Figure from "Understanding Vision: theory, models, and data", by Li Zhaoping, Oxford University Press, 2014



SPACE-TIME

SEPARABLE

SPACE-TIME

NON-SEPARABLE

Dynamics of receptive field (RF) structure of simple cells from striate cortex of the cat. By varying the correlation delay, t, in the RF mapping

algorithm, 'snapshots' of the RF can be obtained at different times relative to stimulus onset. These data were obtained using a reverse correlation

technique. For each cell, two-dimensional (2D) spatial (x-y) RF profiles are shown, as isoamplitude contour maps (conventions as in Fig. 1), for six

values of t. Below each contour plot is a 1D RF profile that is obtained by integrating the 2D profile along the y axis, which is parallel to the cell's

preferred orientation. Positive deflections (shaded green) in these 1D profiles indicate bright-excitatory subregions; negative deflections (shaded red)

correspond to dark-excitatory subregions. (A) The RF of this simple cell is approximately space-time separable. From t = 30 ms to t = 120 ms, the RF

profile has two dominant subregions, which are arranged with the dark-excitatory subregion on the left. These subregions are strongest at t = 75 ms.

Between t = 120 ms and t = 165 ms, the RF reverses polarity, so that the bright-excitatory subregion is now on the left. This arrangement then persists

over the remainder of the cell's response duration. Note that, at all values of t, the 1D RF profile is approximately odd symmetric (sine phase). (B) A

fundamentally different type of spatiotemporal behavior is illustrated here. For this cell, the RF is space-time inseparable - the spatial organization of the

RF changes over time. At t = 20 ms, the 1D profile is approximately even symmetric (cosine phase) whereas, at t = 100 ms, the RF profile is odd

symmetric. Later, at t = 180 ms, the RF becomes even symmetric again but the profile is inverted relative to that at t = 20 ms.

DeAngelis, Ohzawa & Freeman (1995). TINS, 18(10), 451-458.

Receptive field (RF) spatial structure over time of simple 

cells in area 17 of the cat



In each panel, the horizontal axis represents space (x), and the vertical axis

represents time (t). For panels A-F, solid contours (with green shading) delimit

bright-excitatory regions, whereas broken contours (with red shading) indicate

dark-excitatory regions. To construct these x-t plots, 1D RF profiles are

obtained, at finely spaced time intervals (5-10ms), over a range of values of t.

These 1D profiles are then 'stacked up' to form a surface, which is smoothed

and plotted as a contour map. (A) An x-t profile is shown here for a typical ON-

center, non-lagged X-cell from the LGN. For t < 50ms, the RF has a bright-

excitatory center and a dark-excitatory surround. However, for t > 50ms, the

RF center becomes dark-excitainhibitory, and the surround becomes bright-

excitatory. (B) An x-t plot of an ON-center, lagged X-cell. Note that the second

temporal phase of the profile is strongest. (C) An x-t profile for a simple cell

with a space-time separable RF. For t < 100 ms, the RF has a dark-excitatory

subregion to the left of a bright-excitatory subregion. For t > 100ms, each

subregion reverses polarity, so that the bright-excitatory region is now on the

left. (D) Data for another simple cell with an approximately separable x-t

profile. (E) Data are shown for a simple cell with a clearly inseparable x-t

profile. Note how the spatial arrangement of bright- and dark-excitatory

subregions (that is, the spatial phase of the RF) changes gradually with time.

(F) An inseparable x-t profile is shown here for the same simple cell for which

2D spatial profiles are shown in Fig. 2B. Note that the subregions are tilted to

the right in the space-time domain. (G) x-t profiles are shown for the same

complex cell as in Fig. 1C. Responses to bright and dark stimuli are shown

separately because these regions overlap extensively.

Excitatory

Inhibitory

DeAngelis, Ohzawa & Freeman (1995). TINS, 18(10), 451-458.

Spatiotemporal receptive field (RF) profiles 

(x-t plots) for neurons in the lateral 

geniculate nucleus (LGN) and striate 

cortex of the cat. 



MODELING AND (A BIT OF) PHYSIOLOGY



Component and pattern MT cell responses to plaid stimuli. (a) Example plaid stimuli. All plaids were constructed by

superimposing two sinusoidal gratings of equal contrast moving at the same spatial and temporal frequency. Gray arrows

show the motion directions of the two gratings; black arrows show the motion direction of the plaid. The angular separation

between the two gratings (the plaid angle) is given below each stimulus. When the plaid angle is zero, the gratings form a

single grating with twice the contrast. (b) Direction tuning curves for example component (left) and pattern (right) cells,

collected for plaids with different plaid angles. Each colored tuning curve represents the response to a particular plaid. For

the component cell on the left, the functions have two peaks, displaced from one another by the angle of the plaid; for the

pattern cell on the right, all have similar shapes and preferred directions. Also shown is the half-contrast grating tuning

curve (black dotted line). (c) Surface and contour plots of response of a neuron preferring a 180° direction as a function

of the direction of the two grating components. The colored lines in c indicate the loci of the particular 2 component angular

differences whose responses are shown in the same colors in b. Each direction interaction plot is symmetrical about the

main diagonal (a plaid constructed from gratings 0° and 120° gratings is equivalent to a plaid constructed from 120° and 0°

gratings). In the contour plots, contours begin at 20% of the maximum firing rate and subsequent contours indicate 10%

increments.

Rust, Mante, Simoncelli & Movshon (2006). How MT cells analyze the motion of visual patterns. Nat. Neurosci., 9(11), 1420-31.

“Component” cells “Pattern” cells

Family of plaids that share an axis of motion 

but are composed of different combinations 

of grating directions (that is, the family of 

stimuli in a).



Divisive normalization by 2 

components: by itself and 

by the whole population 

(each with its own weight)

Linear combination of 

V1 neuron outputs 

according to the MT 

linear weighting fct.

Inhibition

Excitation

Transformation 

into firing rate 

via a nonlinear 

fct.

To recover the components of

the model, we presented a

sequence of stimuli containing

random combinations of 6 gra-

tings, chosen with replacement

from a pool of 12 gratings

drifting in different directions.

Arrows indicate the grating

components randomly selected

on a particular trial; longer

arrows indicate the selection

of more than one grating

drifting in the same direction.

After 160 ms, another set of 6

randomly selected gratings was

immediately presented.

160ms by 160ms response of 

each of the 12 V1 cells in a.

Hypothetical spike train of an MT cell in

response to the random grating stimulus. The

spikes were shifted by the latency of the cell’s

response (Dt) and the number of spikes occur-

ring in a 160-ms bin counted. The cascade mo-

del is then fit to these spike count data.

Model parameters

• V1 direction bandwidth

• Weights for the 2 normalization 

components

• Exponent of the nonlinear 

transform

Rust, Mante, Simoncelli & Movshon (2006). How MT cells analyze the motion of visual patterns. Nat. Neurosci., 9(11), 1420-31.

Model’s parameters (bandwidth, 2 weights

for normalization) were optimized optimized

for each cell to maximize the likelihood of

the observed responses.



Normalization works (here) by

dividing each output

by the sum of all outputs.

Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181-197.

RESPONSE NORMALIZATION

Divisive 

inhibition



Dissection of the elements of the cascade model that create

particular kinds of selectivity for the motion of plaids for five

example cells ordered by pattern index (a–e). The first column

shows the response of a version of the V1 stage of the model,

without normalization, equivalent to the square root of the

response of an energy model. The 2nd column shows the

response of the V1 stage when normalization is included. 3rd

column: if V1 stage projected to MT stage using only excitatory

weights.

(f) Plots illustrating the role of V1 normalization in the

computation of pattern motion for the fifth example cell. The first

panel shows the combined effects of the V1 tuning bandwidth

and the distribution of MT excitatory weights, without

normalization. The second panel demonstrates the effect of

including the MT inhibitory weights. The third panel illustrates the

distribution of the V1 normalization signal across the direction-

interaction surface. The final panel shows the effect of adding the

normalization signal at the V1 stage. This is like dividing the

response due to convergent excitation and inhibition (panel 2) by

the normalization signal (panel 3).

Only in this final panel is direction-invariant pattern selectivity

seen.

Rust, Mante, Simoncelli & Movshon (2006). How MT 

cells analyze the motion of visual patterns. Nat. 

Neurosci., 9(11), 2006



Felleman D.J & Van Essen D.C (1987). Receptive 

field properties in area V3A of Macaque monkey 

extrastriate cortex. J. Neurophysiol., 57(4), 889-920.

Comparison of neuronal selectivities across visual

cortical areas. Estimates of the proportion of cells in

different cortical areas selective for A, orientation;

B, direction; C, binocular disparity; and D, color.

Qualitative estimates indicated by open symbols

and quantitative estimates by solid symbols.

Numbers beside each symbol refer to individual

published studies as indicated below.

I. Albright ('84)

2. Albright et al. ('84)

3. Anderson et al. ('82)

4. Baizer ('82)

5. Baizer et al. {'77)

6. Bullier and Henry ('80)

7. Burkhalter and Van Essen ('86)

R. De Valois et al. ('82)

9. DeYoe and Van Essen ('85)

10. Dow ('74)

II. Dow and Gouras ('73)

12. Felleman and Van Essen (present 

study)

13. Felleman and Van Essen 

(unpublished)

14. Fischer and Poggio ('79)

15. Fischer et al. ('81)

16. Gouras ('74)

17. Hube1 and Wiesel ('68)

18. Maunsell and Van Essen ('83a)

19. Maunsell and Van Essen ('83b)

20. Poggio ('72)

21. Poggio and Fischer 

('77)

22. Poggio and Talbot ('81)

23. Poggio et al. ('75)

24. Poggio et al. ('77)

25. Poggio et al. ('85)

26. Schein et al. ('82)

27. Schiller et al. ('76)

28. Spinelli et al. ('70)

29. Van Essen and Zeki

('78)

30. Wurtz ('69)

31. Yates ('74)

32. Zeki ('74)

33. Zeki ('73)

34. Zeki ('75)

35. Zeki ('77)

36. Zeki ('78)

37. Zeki ('80)

38. Zeki ('83)

39. Foster eta!. ('85)

Directional preference across visual areas of the macaque 



Directional preference of 147 V1 macaque cells is plotted as a function of laminar position. Directional

preference calculated as ratio of peak response in the preferred direction to the response in the non-preferred

direction. Only cells in layer 6 and middle layer 4 show pronounced directional tuning. Twelve of the cells

included in this distribution were non-oriented. Open symbols, 54 complex cells plus 3 nonlinear, non-oriented

cells; closed symbols, 81 simple cells plus 9 linear non-oriented cells.

Hawken, Parker & Lund (1988). J. Neurosci., 8(10), 3541-48.

Directional preference of V1 macaque 

complex

simple



Frequency histograms of directionality indices for 

randomly sampled V1 neurons (top), randomly 

sampled MT neurons (middle), and V1 neurons 

antidromically activated from MT (bottom). 

Movshon J.A. & Newsome W.T. (1996). Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys, J. Neurosci, 

16(23), 7733-41.

A. Scatterplot of the partial correlation

coefficients calculated for each

antidromically activated neuron. The

abscissa shows the partial correlation

between the data and the “component”

prediction, whereas the ordinate shows the

partial correlation between the data and the

“pattern” prediction. The bullet-shaped

contour divides this space into three regions

of interest. Down and to the right is a region

in which the correlation with the component

prediction significantly exceeded the

correlation with the pattern prediction or 0,

whichever was larger. Neurons falling into

this region most closely reflected the motion

of the component gratings, and we consider

such neurons to be component direction-

selective. The converse relationship holds in

the region up and to the left, and we

consider neurons falling in this area to be

pattern direction-selective. In between is a

region in which cells cannot be classified as

selective for either pattern or component

motion. For cells in this region, neither

correlation coefficient differed significantly

from 0, or the two coefficients did not differ

significantly from each other. For

comparison, panels B and C, shows similar

scatterplots for populations of neurons

randomly sampled from V1 and MT,

respectively. Overall, the distribution from

the antidromically activated neurons

appeared to be indistinguishable from that

observed for V1 neurons (Fig. 6B) and was

obviously different from the much broader

distribution observed for MT neurons (Fig.

6C).

Directional preference in V1 & MT areas of the macaque 

V1

MT

V1

Antidromically

activated



Responses of an MT cell to gratings, plaids, and

pseudoplaids. Polar plots express cell response in spikes

per second as distance from the origin, with the angle

indicating the stimulus direction of motion. The small orange

circles indicate spontaneous firing rate. a, d, Responses to a

drifting grating covering one or the other of two patches

within the receptive field, as indicated by the stimulus icons.

b, e, Responses to the plaids created by summing two of the

gratings tested in a, with orientations differing by 120°.

Dashed red curves indicate the predicted response of a

component-direction-selective cell. c, f, Responses to

pseudoplaids obtained with gratings in the two patches

arranged with a direction difference of +120° (c) or –120° (f).

Majaj, N. J., Carandini, M. a Movshon, J. A. (2007). Motion integration in Macaque  MT is local, not global. J. Neuroscience, 27, 366-370.

Summary of the results across the cell population. a, The degree to which cells are

selective for the direction of a whole pattern or of the individual components as

determined with small plaid stimuli. The Z-transformed partial correlations between

the data and the “component” and “pattern” models are plotted against one

another. Gray lines separate regions within which cells are classified as pattern-

direction selective or component-direction selective, according to a conservative

statistical criterion. Cells classified as pattern selective are indicated in red, as

component selective in blue– green, and as unclassed by this method in black. b,

A similar plot made from data taken from the same cells using pseudoplaids. The

colors indicating the classification of the cells using small plaids are retained from

a.



THE APERTURE PROBLEM 

and

VELOCITY COMPUTATION



The barber pole illusion
(Guilford, 1929)

http://en.wikipedia.org/wiki/Barberpole_illusion

Movshon, Adelson, Gizzi & Newsome (1985).

http://en.wikipedia.org/wiki/Barberpole_illusion




Barber Pole

The aperture problem
(Wallach, 1935)



The aperture problem
Vector sum
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Adelson & Movshon, Nature, 1982

The aperture problem
Intersection of Constraints (IOC; Adelson & Movshon, 1982)

The velocity-space representation of a random-texture field moving to the right. The field contains components of all

orientations, and the primary motion vector for each ends on the circle passing through the origin; the common

motion 'implied' is the rightward motion given by the bold arrow This circular locus of primary motions represents all

the motions that can exist in a single rightward-moving pattern. As such, the locus could represent the preferences of

a family of primary motion analysers whose outputs are combined to signal coherent two-dimensional motion.



Movshon, Adelson, Gizzi & Newsome (1985).



The aperture problem
Intersection of Constraints (IOC; Adelson & Movshon, 1982)

Intersection of Constraints

IOC



VELOCITY COMPUTATION



Jump to

MODEL



Motion Energy
Velocity computation

Adelson, E. H. & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of 

motion. J. Opt. Soc. Am. A 2, 284-299.

Because of the univariance principle (the output of a velocity tuned neuron varies with both

velocity and contrast – and also with SF and TF) and the aperture problem neither a

Reichardt nor a motion energy unit will be able to code velocity by itself. Some kind of

population code is required.
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Rmax = max resp.

N = max slope

S = semi-saturation cst.

Rs = spontaneous R
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At high velocities or low contrasts, the denominator in the ratio can become quite small, and so the velocity estimate will

blow up or become unreliable. The visual system must have some means of tagging the velocity estimate with a

confidence measure; the simplest approach would be to use the output of the static channel as it stands. High velocities

or low contrasts would then lead to low-confidence measures for the velocity of the pattern. When this information is

combined with motion information from other channels, its low confidence would cause it to receive a relatively low weight

in determining the final motion percept. (Adelson & Bergen, 1985, p 293-294)
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Response functions 

& response ratios
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Simoncelli, E.P. & Heeger, D.J (1998) Vision Res., 38(5), 743-761.

FIGURE 1. Model of V1 simple cells. Each

neuron computes a weighted sum of its inputs

followed by halfwave rectification, squaring, and

response normalization. The underlying linear

receptive fields (depicted as monochrome

images) are localized in space and time, and are

tuned for spatio-temporal orientation. An additive

constant, a1, is included in the summation,

allowing for a spontaneous firing rate. The

divisive normalization factor is computed as a

sum of half-squared responses and a squared

semi-saturation constant, 1.

Motion Energy
Velocity computation

Basic structure of the model

• Two primary stages: V1 & MT

• The basic form of computation is identical in 

each stage: a weighted sum of input values 

followed by rectification, squaring and 

response normalization

Spikes are positive

Accounts for response saturation 

& cross-orientation inhibition
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FIGURE 2. Construction of MT pattern cell velocity selectivity via combination of V1 complex

cell afferents. (A) Random dot field stimulus, drifting upward. (B) Fourier decomposition of

the dot stimulus. The stimulus is written as a sum of drifting sinusoidal components of

appropriate orientation and normal velocity. A small subset of these are shown. (C)

Intersection of constraints (IOC) construction. The motion of a grating is ambiguous,

since the component of velocity along the grating stripes produces no change in

image intensity. Each arrow corresponds to the normal component of velocity for two of the

gratings shown in (B), and the dashed lines indicate the set of velocities consistent with the

motions of those gratings. The intersection point of these constraint lines is the only

velocity consistent with the motion of all of the components, and corresponds to the

velocity of the dot stimulus. (D) Set of V1 complex receptive fields selective for each of the

components shown in (B). The summed responses of such V1 neurons yield a pattern MT

response that is selective for this stimulus velocity.



Vy

Vx

Adelson & Movshon, Nature, 1982
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Vk = V0cos(a) 

V0



FIGURE 3. Construction of MT pattern cell velocity selectivity via combination of V1 complex cell afferents,

shown in the Fourier domain. (A) Selectivity of a V1 neuron corresponds to a pair of localized spatio-

temporal frequency bands, symmetrically arranged about the origin. (B) Selectivities of V1 neurons tuned

for four orientations and three spatial scales, each consistent with a common velocity. The illustrated plane

corresponds to the power spectrum of a stimulus moving at this common velocity. Responses of these V1

neurons are summed using positive (excitatory) weights to yield an MT response selective for this velocity.

Not shown are a set of V1 neurons whose tuning bands lie off of the plane: these are combined using

negative (inhibitory) weights. Also not indicated is the fact that the summation is performed over V1

neurons with receptive fields distributed over a local spatial region.

Motion Energy
Velocity computation

Simoncelli, E.P. & Heeger, D.J (1998) Vision Res., 38(5), 743-761.



Jump to the

BINDING PROBLEM



POPULATION CODING/DECODING
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Vector sum*

*Georgopoulos, Kalaska, Caminiti, & Massey (1982). J. Neurosci. 2, 1527–1537.

Drawbacks to population vector:

• It computes just one single estimate of the stimulus (rather than the full 

likelihood function);

• It ignores the contribution of the full tuning properties of the neurons

k

Winner takes all

Maximum of outputs & Population vector



Jazayeri, M. & Movshon, J.A. (2006). Nat. Neurosci., 9, 690-696.

State of affairs: Neurons are broadly tuned; their response is noisy

A given stimulus evokes a noisy population response, i.e. no. of spikes 

for each neuron, ni.

The task: infer the stimulus θ0 given R. 

Question

how likely it is that each possible stimulus θ elicited the observed 

response, ni, i.e. what is p(θ | ni)?

Strategy:

(1) determine for each neuron tuned to θi the likelihood of its observed 

response ni given θ, i.e. p(ni | θ)

(2) Repeat the procedure for all θ for the observed population response, 

 the likelihood function.

…Some mathematics…

INTERPRETING POPULATION RESPONSE



PHYSICAL SPACE

ORIENTATION TUNED NEURONS

Global 

“circuitry”

Broadly tuned 

noisy neurons

PHYSICAL SPACE

ORIENTATION TUNED NEURONS

Each stimulus q

evokes a noisy 

population response

PHYSICAL SPACE

ORIENTATION TUNED NEURONS

Broadly tuned 

neurons

PHYSICAL SPACE

ORIENTATION TUNED NEURONS

i k
nk=maxk

ni=basei

n spikes

Q: How likely it is that each stimulus (q) elicited the observed population response 

(p(qi\ni)?

1. “Ask” each neuron i the likelihood that its response, ni,  was elicited by that stimulus, 

i.e. p(ni\q)  the likelihood function of each neuron, Li(q).

1a. ni is a stochastic variable and its mean, given a stimulus q0, is fi(q0) where fi(q) is 

the tuning function of the neuron.

1b. The likelihood of stimulus q0 is but the probability that this neuron would fire ni

spikes in response to that stimulus, given its tuning function, i.e. Li(q0) = p(ni\q0)

2. Combine the likelihoods over all neurons and all possible q to determine the overall 

likelihood of each possible q.

2a. For each q compute the joint probability that each neuron i responds according 

to its tuning function fi(q), i.e. p(n1\q)  p(n2\q)  …  p(nn\q);

2.b If the likelihood is computed in log space, then the multiplication transforms into 

an arithmetic sum, 



Jazayeri & Movshon (2006). Nat. Neurosci., 9, 690-696.

INTERPRETING POPULATION RESPONSE

Figure 1. Computing the log

likelihood function in a feedforward

network.

At its input (bottom), a stimulus (q),

elicits n1, n2, ..., nN spikes in the

sensory representation. The response

of each neuron multiplied by the

logarithm of its own tuning curve,

log[fi] at q, gives the contribution of

that neuron to the log likelihood

function. Adding the contribution of

individual neurons (shown for two

example stimulus values in orange

and green) gives the overall log

likelihood function, log L(q) for all

values of q that could have elicited

this pattern of responses. Here, the

orange point at the peak of the log

likelihood function indicates the most

likely stimulus.

ni

Weights



log[p(ni | q)]

q

The likelihood of the stimulus θ0, denoted Li(θ0), is 

simply the probability that this neuron would fire ni

spikes in response to that stimulus; that is, p(ni|θ0).

Imagine a sensory stimulus activating a population of neurons in a cortical sensory area. These

neurons are often broadly tuned, and the response of each one is noisy. As a result, every stimulus

evokes a noisy population response at the level of the sensory neurons; the task is to infer the

stimulus from this response. To solve this problem, we ask how likely it is that each possible

stimulus elicited the observed response. To determine how likely a given stimulus is, one strategy is

to ask each neuron the likelihood that its response was elicited by that stimulus, and then combine

the likelihoods to determine the overall likelihood of that stimulus. By repeating the same procedure

for all stimuli, one can compute the likelihood of every stimulus for the particular observed

population response. This is what the likelihood function represents.



BAYESIAN MOTION



Response

Likelihood

Function

P(M|S)

Prior

Distributions

P(S)

Bayes’

Theorem

P(M)
P(S|M) =

Stimulus

(S)

Possible interpretations:

1. highly curved cylinder from a high angle of 

view,

2. a flatter cylinder from a low angle of view,

3. a concave cylinder from yet another viewpoint.

Gain

Function

Decision

Rule
Posterior

Distribution

Kersten, Mamassian & Yuille, 2004

Bayes theorem

M measure or neural response
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Motion illusions as optimal percepts

(Weiss, Simoncelli & Adelson, Nature Neuroscience 2002)

The pattern of local image velocities on the retina encodes important environmental information. Although 

humans are generally able to extract this information, they can easily be deceived into seeing incorrect 

velocities. We show that these ‘illusions’ arise naturally in a system that attempts to estimate local image 

velocity. We formulated a model of visual motion perception using standard estimation theory, under the 

assumptions that (i) there is noise in the initial measurements and (ii) slower motions are more likely to 

occur than faster ones.

http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html


Likelihood functions for three local patches of 

a horizontally translating diamond stimulus, 

computed using equation (4). Intensity 

corresponds to probability. Top, high-contrast 

sequence. Bottom, low-contrast sequence, 

with the same parameter σ. At edges, the 

local likelihood is a ‘fuzzy’ constraint line; at 

corners, the local likelihood peaks around the 

veridical velocity. The sharpness of the 

likelihood decreases with decreasing contrast.

Insufficiency of either Vector Average, IOC or Feature 

Tracking rules as an explanation for human perception of a 

horizontally moving rhombus. (a) A ‘narrow’ rhombus at high 

contrast appears to move horizontally (consistent with 

IOC/FT). (b) A narrow rhombus at low contrast appears to 

move diagonally (consistent with VA). (c) Velocity space 

constraints for a narrow rhombus. (d,e) A ‘fat’ rhombus at low 

or high contrast appears to move horizontally (consistent with 

IOC/FT). (f) Velocity space constraints for a fat rhombus.

Motion illusions as optimal percepts
Intersection of Constraints & Priors (Weiss, Simoncelli & Adelson, 2002)

http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

IOC

VA

IOC

VA

http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html


Predictions of ideal observer for rhombus stimuli. (a–

c) Construction of the posterior distribution for the 

rhombus stimuli. For clarity, likelihood functions for 

only two locations are shown; the estimator used in 

our study incorporated likelihoods from all locations. 

(d) Circles show perceived direction for a single 

human subject as rhombus angle was shifted 

gradually from thin to fat rhombuses (all three subjects 

showed a similar effect, and all gave informed consent 

to participate in the study). Each subject was given 

100 presentations. Solid line shows the predictions of 

the Bayesian estimator computed using equation (1), 

where the free parameter was varied manually to fit 

the data. Dotted lines indicate the predictions when 

the free parameter was decreased by a factor of 10 

(top dotted line) or increased by a factor of 10 (bottom 

line).

Motion illusions as optimal percepts
Intersection of Constraints & Priors (Weiss, Simoncelli & Adelson, 2002)

http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html


THE BINDING PROBLEM

Intersection of Constraints (for motion only)

Synchronization

Gestalt rules (e.g. common fate)

Feature integration (Treisman)

The binding problem is when you look at what's happening in the brain, you find there's a

division of labor. You have some parts of your brain that care about vision, some about

hearing, some about touch. And even within a system, like vision, you have parts that care

about colors, parts that care about orientations, parts that care about angles. And how this

all comes together so that you have a unified perception of the world is one of the

unsolved mysteries in neuroscience.

David Eagleman



Récupération des

coordonnées x-y

Feature Integration Theory revisited (Treisman, 1988)



The binding problem

http://www.michaelbach.de/ot/mot-motionBinding/index.html

Lorenceau & Shiffrar (1992) Vis. 

Res., 32(2), 263-273.

Lorenceau & Shiffrar (1996) Vis. 

Res., 36(14), 2061-2067.

http://www.michaelbach.de/ot/mot-motionBinding/index.html


The binding problem

Lorenceau & Shiffrar (1992) Vis. 

Res., 32(2), 263-273.

Lorenceau & Shiffrar (1996) Vis. 

Res., 36(14), 2061-2067.



THE END




